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Number
Systems

 

Decimal notation represents numbers as powers of 10, for example 

There is no particular reason for the choice of 10, except that several historical num-
ber systems were derived from people’s counting with their fingers. Other number
systems, using a base of 12, 20, or 60, have been used by various cultures through-
out human history. However, computers use a number system with base 2 because
it is far easier to build electronic components that work with two values, which can
be represented by a current being either off or on, than it would be to represent 10
different values of electrical signals. A number written in base 2 is also called a

 

binary

 

 number.
For example,

Binary Numbers

1729 1 10 7 10 2 10 9 103 2 1 0
decimal = × + × + × + ×

1101 1 2 1 2 0 2 1 2 8 4 1 133 2 1 0
binary = × + × + × + × = + + =
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For digits after the “decimal” point, use negative powers of 2.

In general, to convert a binary number into its decimal equivalent, simply evaluate
the powers of 2 corresponding to digits with value 1, and add them up. Table 1
shows the first powers of 2.  

 

 

1 101 1 2 1 2 0 2 1 2

1 1
2

1
8

0 1 2 3. binary = × + × + × + ×

= + +

=

− − −

11 0 5 0 125 1 625+ + =. . .

Table 1  Powers of Two

Power Decimal Value

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024

211 2,048

212 4,096

213 8,192

214 16,384

215 32,768

216 65,536
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To convert a decimal integer into its binary equivalent, keep dividing the integer
by 2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the 

 

last

 

 one. For example, 

Therefore, 100

 

decimal

 

 

 

=

 

 1100100

 

binary

 

.
Conversely, to convert a fractional number less than 1 to its binary format, keep

multiplying by 2. If the result is greater than 1, subtract 1. Stop when the number is
0. Then use the digits before the decimal points as the binary digits of the fractional
part, starting with the 

 

first

 

 one. For example, 

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110 0110
0110 . . . 

To convert any floating-point number into binary, convert the whole part and
the fractional part separately. 

To represent negative integers, there are two common representations, called
“signed magnitude” and “two’s complement”. Signed magnitude notation is simple:
use the leftmost bit for the sign (0 

 

=

 

 positive, 1 

 

= 

 

negative). For example, when using
8-bit numbers,

100 2 50
50 2 25
25 2

0
0

÷ =
÷ =
÷

remainder
remainder

==
÷ =
÷ =

12
12 2 6
6 2 3

1
0

remainder
remainder
remaainder
remainder
remainder

0
1
1

3 2 1
1 2 0

÷ =
÷ =

. .⋅ =0 35 2 7
0 7 2 4
0 4 2 8
0 8 2 6
0 6 2

0
1
0
1

. .

. .

. .

.

⋅ =
⋅ =
⋅ =
⋅ = 11

0
2

0 2 2 4
.

. .⋅ =

Two’s  Complement  Integers

− =13 10001101signed magnitude
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However, building circuitry for adding numbers gets a bit more complicated when
one has to take a sign bit into account. The two’s complement representation solves
this problem. To form the two’s complement of a number, 

• Flip all bits.
• Then add 1.

For example, to compute 

 

−

 

13 as an 8-bit value, first flip all bits of 00001101 to get
11110010. Then add 1:

Now no special circuitry is required for adding two numbers. Simply follow the
normal rule for addition, with a carry to the next position if the sum of the digits
and the prior carry is 2 or 3. For example, 

But only the last 8 bits count, so 

 

+

 

13 and 

 

−

 

13 add up to 0, as they should.
In particular, 

 

−

 

1 has two’s complement representation 1111 . . . 1111, with all bits
set.

The leftmost bit of a two’s complement number is 0 if the number is positive or
zero, 1 if it is negative.

Two’s complement notation with a given number of bits can represent one more
negative number than positive numbers. For example, the 8-bit two’s complement
numbers range from 

 

−

 

128 to 

 

+

 

127. 
This phenomenon is an occasional cause for a programming error. For example,

consider the following code:

 

byte b = . . .;
if (b < 0) b = -b;

 

This code does not guarantee that 

 

b

 

 is nonnegative afterwards. If 

 

b

 

 happens to be

 

−

 

128, then computing its negative again yields 

 

−

 

128. (Try it out—take 10000000, flip
all bits, and add 1.)

The Institute for Electrical and Electronics Engineering (IEEE) defines standards
for floating-point representations in the IEEE-754 standard. Figure 1 shows how
single-precision (

 

float

 

) and double-precision (

 

double

 

) values are decomposed into 

• A sign bit
• An exponent
• A mantissa

− =13 11110011two s complement’

+13    0000 1101
-13    1111 0011

     1 0000 0000

1  1 1 1 1  1 1 1

I E E E F loat ing-Point  Numbers
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Floating-point numbers use scientific notation, in which a number is represented as

In this representation, 

 

e

 

 is the exponent, and the digits  form the man-
tissa. The 

 

normalized

 

 representation is the one where 

 

b

 

0

 

 

 

≠

 

 0. For example, 

100

 

decimal

 

 = 1100100

 

binary

 

 = 1.100100

 

binary

 

 

 

×

 

 2

 

6

 

Because in the binary number system the first bit of a normalized representation
must be 1, it is not actually stored in the mantissa. Therefore, you always need to
add it on to represent the actual value. For example, the mantissa 1.100100 is stored
as 100100.

The exponent part of the IEEE representation uses neither signed magnitude nor
two’s complement representation. Instead, a bias is added to the actual exponent.
The bias is 127 for single-precision numbers, 1023 for double-precision numbers.
For example, the exponent 

 

e

 

 

 

=

 

 6 would be stored as 133 in a single-precision
number.

Thus, 

100

 

decimal

 

 = 

 

single-precision IEEE

 

In addition, there are several special values. Among them are:

•

 

Zero:

 

 biased exponent 

 

=

 

 0, mantissa 

 

=

 

 0.
•

 

Infinity:

 

 biased exponent 

 

=

 

 11. . .1, mantissa 

 

=

 

 0.
•

 

NaN

 

 (not a number): biased exponent 

 

=

 

 11. . .1, mantissa 

 

≠

 

 10. . .0.

 

 

 

 

 

F igure 1

 

IEEE Floating-Point Representation

1 bit

1 bit

sign

sign

biased exponent
e + 127

8 bit 23 bit

Single Precision

11 bit 52 bit

biased exponent
e + 1023

mantissa
(without leading 1)

mantissa
(without leading 1)

Double Precision

b b b b e
0 1 2 3 2. … ×

b b b b0 1 2 3. …

0 10000110 10010000000000000000000
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Because binary numbers can be hard to read for humans, programmers often use
the hexadecimal number system, with base 16. The digits are denoted as 0, 1, . . . , 9,
A, B, C, D, E, F (see Table 2). 

Four binary digits correspond to one hexadecimal digit. That makes it easy to
convert between binary and hexadecimal values. For example, 

11

 

|

 

1011

 

|

 

0001

 

binary

 

 = 3B1

 

hexadecimal

 

 

In Java, hexadecimal numbers are used for Unicode character values, such as 

 

\u03B1

 

(the Greek lowercase letter alpha). Hexadecimal integers are denoted with a 

 

0x

 

 pre-
fix, such as 

 

0x3B1

 

.

Hexadecimal  Numbers

Table 2  Hexadecimal Digits

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
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