
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2005

Lecture Unit 5 - Graphics

2

Lecture Outline

 Frame windows
 Drawing with shapes, colors, and text
 Programming applets
 Developing test cases

CSC120 — Berry College — Fall 2005

3

Frame Windows

 Graphical application (GUI = Graphical User
Interface) shows information in a frame
window

 To show a frame window in Java
 Import javax.swing.* package
 Construct JFrame object
 Set its size, title, close behavior
 Make it visible

4

Showing a Frame Window
1. Construct a JFrame object

JFrame frame = new JFrame();
2. Set frame size: width and height

frame.setSize(300, 400);
3. Set title of frame

frame.setTitle("An Empty Frame");
4. Set ‘default close operation’ (so that program exits

when user closes the frame)
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

5. Make the frame visible
frame.setVisible(true);

EmptyFrameViewer.java

5

Drawing Shapes
 You do not draw directly on a frame
 To show anything in a frame (button, text, drawing,

etc.) construct an appropriate component object
and add it to the frame

 JComponent class represents blank component
 We extend the JComponent class to have it draw

some shapes
 Then add our modified version of JComponent to a frame

to display the drawing

6

Extending JComponent

 extends keyword indicates that our class,
RectangleComponent, inherits all the definitions and
functionality of JComponent
 But, we override the definition of the paintComponent

method so that it does something we want
 paintComponent method is called by the Java

system whenever the component needs to be
redrawn

public class RectangleComponent extends JComponent {

 public void paintComponent(Graphics g) {
 // drawing instructions go here...

 } // end paintComponent method
} // end RectangleComponent class

2

7

paintComponent Method
 Called automatically the first time window is shown

 also called whenever window is resized or shown again
after being hidden

 Takes a Graphics object parameter
 A Graphics object stores the current graphics state:

current color, font, background color, line size, etc.
 Swing toolkit provides Graphics2D class

 Graphics2D: extended version of Graphics class that
allows more sophisticated method to draw two-
dimensional objects

 To recover Graphics2D object from more primitive
Graphics object, use a cast:
 Graphics2D g2 = (Graphics2D) g;

8

Drawing with Graphics2D
 public void paintComponent(Graphics g) {
 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;

 // Construct a rectangle and draw it
 Rectangle box = new Rectangle(5, 10, 20, 30);
 g2.draw(box);

 // Move rectangle 15 units to the right and 25 units down
 box.translate(15, 25);

 // Draw moved rectangle
 g2.draw(box);
 }

 Graphics and Graphics2D classes part of java.awt package -
needs to be imported
 AWT = Abstract Windowing Toolkit

9

Complete RectangleComponent
import java.awt.*; // imports all classes in java.awt package
import javax.swing.*;

/**
 A component that draws two rectangles.
*/
public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;

 // Construct a rectangle and draw it
 Rectangle box = new Rectangle(5, 10, 20, 30);
 g2.draw(box);

 // Move rectangle 15 units to the right and 25 units down
 box.translate(15, 25);

 // Draw moved rectangle
 g2.draw(box);
 }
}

10

Displaying Rectangle Frame
 To display the RectangleComponent, you need to

add it to a frame window

1. Construct frame as described earlier
2. Construct object of component class

 RectangleComponent component = new RectangleComponent();
3. Add component to the frame

 frame.add(component);
or frame.getContentPane().add(component); in earlier Java versions

4. Make frame visible

11

RectangleViewer Class

import javax.swing.JFrame;

public class RectangleViewer {

 public static void main(String[] args) {
 JFrame frame = new JFrame();

 final int FRAME_WIDTH = 300;
 final int FRAME_HEIGHT = 400;

 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setTitle("Two rectangles");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 RectangleComponent component = new RectangleComponent();
 frame.add(component);

 frame.setVisible(true);
 }
} 12

Applets
 “Mini-application” embedded in a web page
 Run with browser or applet viewer
 Differences (from applications)

 Don’t have a main method
 Embedded within HTML document (web page)
 Subject to more security constraints
 Not in control of own execution--respond to browser or

viewer

 Can program graphics in single class - no need for
separate component and viewer classes

3

13

Applet Code Skeleton
import java.awt.*;
import javax.swing.*;

public class MyApplet extends JApplet {

 public void paint(Graphics g) {
 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;

 // Drawing instructions go here ...
 }

}

 Extend JApplet instead of JComponent
 Put drawing code inside paint method instead of

paintComponent instead
 RectangleApplet.java

14

Running an Applet
 Need an HTML file with an applet tag
 HTML = Hypertext Markup Language

 Plain text file with formatting commands - ‘tags’
 Browser displays the contents of the file according to the

formatting tags
 To see HTML of file displayed in your browser, look for a ‘View

Source’ command in the menus

 Simplest file to display an applet:
<applet code="RectangleApplet.class" width="300" height="400">
</applet>

15

Another HTML File

<html>
 <head>
 <title>Two rectangles</title>
 </head>

 <body>
 <p>Here is my <i>first applet</i>:</p>

 <applet code="RectangleApplet.class"
 width="300" height="400">
 </applet>
 </body>
</html>

16

Viewing Applets
 Use applet viewer program with Java SDK

appletviewer RectangleApplet.html
 Only looks for <applet> tag in a web page-- allows you to

test your applets before putting them on a web page

 Or use a ‘Java 2-enabled’ browser

 WARNING: Browsers often save a copy of an
applet in memory for a long time (e.g. until the
entire application is exited) so if you change applet
code and recompile, then reload the page in the
browser, the browser may not use the latest version
of the applet

17

The Internet
 1960s - ARPANET

 Universities, research institutions
 Initial intent: allow remote execution of programs
 ‘Killer app’: electronic mail

 1972 - Internet (Bob Kahn)
 Collection of interoperable networks
 Share common protocols for transmitting data
 1983: TCP/IP: Kahn and Vinton Cerf

 1989 - WWW (Tim Berners-Lee)
 Hyperlinked documents
 First interfaces clumsy to use
 1993: Mosaic graphical ‘web browser’ (Marc Andreesen)

 Lots of different protocols over Internet
 FTP, telnet, gopher, file sharing, IM, smtp, … 18

Graphical Shapes
 Rectangles…
 Ellipses (and circles)

 Use Ellipse2D.Double (or Ellipse2D.Float)
 Stores coordinates as double values

 Lines
 Use Line2D.Double (or Line2D.Float)

 Strange class names indicate they are inner classes
 One class defined inside another
 Just import java.awt.geom.Ellipse2D as usual and

use above names

4

19

Drawing Ellipses and Lines
 Must construct and then draw shape objects

Ellipse2D.Double ellipse
= new Ellipse2D.Double(x, y, width, height);

g2.draw(ellipse);

 To construct a line object
Line2D.Double segment

= new Line2D.Double(x1, y1, x2, y2);

 or
Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);
Line2D.Double segment = new Line2D.Double(from, to);

g2.draw(segment); 20

Drawing Strings

 Specify string and basepoint of first character

g2.drawString("Message", 50, 100);

• Give code to draw a circle with center (100, 100) and radius 25

• Give code to draw a letter "V" by drawing two line segments

21

Colors
 Graphics context object keeps track of the current

drawing color
 To change the color, supply a Color object to the

setColor method
 Colors in Java specified by RGB (red-green-blue)

model
 Components given as float values (use an F suffix)

between 0.0F and 1.0F

Color magenta = new Color(1.0F, 0.0F, 1.0F);
g2.setColor(magenta);

22

Predefined Colors and Fills

 Color class defines commonly used colors
Color.BLUE, Color.RED, Color.ORANGE, … (page 164)

 setColor method affects the line color
 To draw shapes filled in with current color

Rectangle box = ...;
 g2.fill(box);

23

Drawing Complex Shapes

 Good practice: Make a class for each
grapical object

 Plan complex shapes by making sketches
on (graph) paper

public class Car {
 . . .

 public void draw(Graphics2D g2) {
 // Drawing instructions

 . . .
 }
} 24

Finding Shape Coordinates

/**
 A car shape that can be positioned anywhere on the screen.
*/
public class Car
{
 /**
 Constructs a car with a given top left corner
 @param x the x coordinate of the top left corner
 @param y the y coordinate of the top left corner
 */
 public Car(int x, int y)
 {

 }

 /**
 Draws the car.
 @param g2 the graphics context
 */
 public void draw(Graphics2D g2)
 {

 }
}

5

25

CarComponent Class
 Draw two cars – one in top left, one in

bottom right corner of the component
 JComponent class provides
getWidth/getHeight methods for
dimensions of the component

 Car.java
 CarComponent.java

26

CarViewer
import javax.swing.JFrame;

public class CarViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();

 final int FRAME_WIDTH = 300;
 final int FRAME_HEIGHT = 400;

 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setTitle("Two cars");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 CarComponent component = new CarComponent();
 frame.add(component);

 frame.setVisible(true);
 }
}

 Try resizing
the window

27

Object-Oriented Method of
Programming Graphics

 Provide class for each object to be drawn
 Implement a draw method, taking a Graphics

parameter
 Provide (a simple) component class that

calls the objects’ draw methods
 Provide a viewer class that sets up a frame

window

28

Reading Text Input
 Use JOptionPane

String input
 = JOptionPane.showInputDialog("Enter x");
double x = Double.parseDouble(input);

 In general, a poor choice for user interface but we
will use it for now – much simpler than the
alternative

 ColorViewer.java
 ColoredSquareComponent.java

29

Comparing Visual and
Numerical Information
 Compute intersection

between circle and
vertical line

 Circle has radius r = 100
and center (a, b) = (100,
100)

 Line has constant x value

 IntersectionComponent.java
 LabeledPoint.java
 IntersectionViewer.java

30

Using Test Cases
 Calculate test cases by hand to check your

application
 Use special boundary conditions

 x = 0; x = 100 …
 Use a few typical input values

 Don’t be reluctant to double-check calculations by
hand

 Random tinkering (switching + and - signs) is not a
good way to debug a program

