
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2005

Lecture Unit 6 - Decisions

2

Lecture Outline

 Implementing decisions using if statements
 Grouping statements into blocks
 Comparing numbers, strings, and objects
 Using Boolean operators and variables

CSC120 — Berry College — Fall 2005

3

Making Decisions
 Computer programs often need to make decisions

 Take different actions depending on some condition(s)
 Example: Can’t withdraw more money than in

account balance
 “If amount-to-withdraw is less than available balance then

deduct from balance; otherwise charge a penalty to the
balance.”



if (amount <= balance)
 balance = balance - amount;

4

if/else Statement
 Does this work?

if (amount <= balance)
 balance = balance - amount;
if (amount > balance)
 balance = balance - OVERDRAFT_PENALTY;

 How about this?
if (amount <= balance)
 balance = balance - amount;
else
 balance = balance - OVERDRAFT_PENALTY;

5

Types of Statements
 Simple

 balance = balance - amount;

 Compound
 if (amount <= balance) balance = balance - amount;

 Block
 Groups multiple statements together
 Can be used anywhere a single statement is used

{
 double newBalance = balance - amount;
 balance = newBalance;
}

6

Syntax: if Statement

if (condition) statement

if (condition) statement1 else statement2

Purpose:Purpose:
To execute a statement(s) depending on whether
a condition is true or false

2

7

Syntax: Block Statement
{

statement1
statement2
...

}

Purpose:Purpose:
To group several statements together to form a

single statement

8

Brace Layout
 Doesn’t matter to compiler – matters to human
 Two suggested styles – choose one and stick to it

if (amount <= balance)
{
 double newBalance = balance - amount;
 balance = newBalance;
}

 or
if (amount <= balance) {
 double newBalance = balance - amount;
 balance = newBalance;
}

9

Indentation
 Another very critical way to

make programs readable
for humans

 Use spaces instead of tab
key

 2, 3, or 4 spaces are best
 Tips

 Always type the beginning and
ending braces first, then fill in
between

 Put comment after closing
brace to indicate what it
matches

public class BankAccount
{
 . . .
 public void withdraw(double amt)
 {
 if (amt <= balance)
 {
 double newBal = balance - amt;
 balance = newBal;
 } // end if
 } // end withdraw method
 . . .
} // end BankAccount class

public class BankAccount {
. . .
public void withdraw(double amt)
{
if (amt <= balance)
{
double newBal = balance - amt;
balance = newBal;
}
} . . .
}

10

Comparing Values

 Relational operators

 == operator denotes equality testing

Not equal≠!=
Equal===
Less than or equal≤<=
Less than<<
Greater than or equal≥>=
Greater than>>
DescriptionMath NotationJava

a = 5; // Assign 5 to a
if (a == 5) . . . // Test whether a equals 5

11

double r = Math.sqrt(2);
double d = r * r -2;
if (d == 0)
 System.out.println("sqrt(2)squared minus 2 is 0”);
else
 System.out.println("sqrt(2)squared minus 2 is not 0 but " + d);

sqrt(2)squared minus 2 is not 0 but 4.440892098500626E-16

Comparing Floating Point

 Don’t compare floating point numbers for (exact)
equality ==
 Doesn’t work because of roundoff errors

 Instead, check if they are close enough (up to a
desired threshold)

12

Comparing Floating Point
(Correctly)

 Test whether (absolute value of) the
difference between two number is close to 0
 Threshold often referred to as ε – ‘epsilon’

 In Java:

!

x " y # $

final double EPSILON = 1E-14;
. . .
if (Math.abs(x - y) <= EPSILON)
 // x is approximately equal to y

3

13

Comparing Strings
 Don’t use == for strings either!

if (input == "Y") // WRONG!!!

 Use the equals method
if (input.equals("Y")) . . .

 == tests identity; equals tests equal contents
 Will see this again in ‘Comparing Objects’ slides

 To test equality ignoring upper/lowercase (‘Y’ or ‘y’)
if (input.equalsIgnoreCase("Y")) . . .

14

Comparing Order of Strings
 Use the compareTo method

 s.compareTo(t) < 0 means s comes before t
 s.compareTo(t) > 0 means s comes after t
 s.compareTo(t) == 0 means s and t are equal

 Java’s ‘dictionary’ order is according to Unicode
 ‘car’ comes before ‘cargo’
 All uppercase letters come before lowercase

 ‘Hello’ comes before ‘car’
 Numbers come before letters

 ‘1’ comes before ‘a’

 See Appendix B in textbook

15

Comparing Objects
 Like strings, == tests identity; equals tests contents

 box1 != box3 but box1.equals(box3)
 box1 == box2

 Warning: equals method must be defined properly
by the class before you can use it

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

16

Object References
Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

17

Testing for null
 Object variable may be set to null
 Indicates ‘no object’

String middleInitial = null; // Not set
if (. . .)
 middleInitial = middleName.substring(0, 1);

 Can be used as a condition (use ==):
if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
else
 System.out.println(firstName + " " + middleInitial
 + ". " + lastName);

18

Strings and null

 Empty string is ""
 Valid string of length 0

 null indicates a string variable does not
refer to anything, not even an empty string

 Always test for null using == not the equals
method

4

19

Conditions with Side Effects
 Avoid in if statements!

 Bad programming practice
 Side effects: assignment, increment, decrement

if ((d = b * b - 4 * a *c) >= 0) r = Math.sqrt(d);

if (n-- > 0) . . .

 Can occasionally be useful to simplify loops
 Next chapter

20

Multiple Alternatives
 Sequences of comparisons

if (condition1) statement1;
else if (condition2) statement2;
. . .
else statementN;

 The first matching condition is executed
 Order matters!

if (richter >= 0) // always passes
 r = "Generally not felt by people";
else if (richter >= 3.5) // not tested
 r = "Felt by many people, no destruction. . .

Earthquake.java
EarthquakeTester.java

21

if vs. if/else
 Consider carefully which one is appropriate to use

if (richter >= 8.0)
 r = "Most structures fall";
if (richter >= 7.0)
 r = "Many buildings destroyed";
if (richter >= 6.0)
 r = "Many buildings considerably damaged, some collapse";
if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
if (richter >= 3.5)
 r = "Felt by many people, no destruction";
if (richter >= 0)
 r = "Generally not felt by people";
return r;

22

Nested Branches
 One if statement inside another

if (condition1) {
 if (condition1A)
 statement1A;
 else
 statement1B;
} else
 statement2;

23

Example: Computing Taxes

If your filing status is marriedIf your filing status is single

31%Amount over $86,50031%Amount over $51,900

28%Amount over
$35,800, up to
$86,500

28%Amount over $21,451,
up to $51,900

15%$0 … $35,80015%$0 … $21,450
PercentageTax BracketPercentageTax Bracket

24

Taxes Flowchart

5

25

Tax Program

 TaxReturn.java
 TaxReturnTester.java

 Beware ‘Dangling else’: pg 210

26

Preparing Test Cases
 Test cases should achieve complete

coverage of input possibilities

 Tax program
 2 filing possibilities
 3 tax brackets
 = 6 possible combinations

 To test the program, select 6 valid inputs
and at least 1 invalid input (negative income)

27

Selection Operator
condition ? value1 : value2

 Combines values to yield another value
depending on condition
 if construct combines statements

if (x >= 0) y = x; else y = -x;
y = x >= 0 ? x : -x;

28

switch Statement

 Replaces sequence of if/else/else
comparing single integer value against
constant alternatives

int digit;
. . .
if (digit == 1)
 System.out.print("one");
else if (digit == 2)
 System.out.print("two");
else if (digit == 3)
 System.out.print("three");
. . .
else if (digit == 9)
 System.out.print("nine");
else
 System.out.print("error");

switch (digit) {
 case 1: System.out.print("one");
 break;
 case 2: System.out.print("two");
 break;
 case 3: System.out.print("three");
 break;
 . . .
 case 9: System.out.print("nine");
 break;
 default: System.out.print("error");
 break;
}

29

switch Statement (cont.)

 Case values must be constants and must be
integers, characters, or enumerated
constants
 Cannot be used with floating point, string, or

objects
 Without break statements, execution ‘falls

through’ to the next case until the end

30

The boolean Type

 George Boole (1815-1864): pioneer in the
study of logic

 Value of an expression like amount < 100 is
either true or false

 boolean type: one of these two truth values
 Sometimes referred to as 0 and 1

double amount = 0;
boolean b = amount < 1000;
System.out.println(b);

6

31

Boolean Operators
 Used to combine boolean expressions

 && — ‘and’
 || — ‘or’ (to type |, use ‘shift’ key + ‘\’)
 ! — ‘not’
 Also called logical operators

 if (0 < amount && amount < 1000) . . .
 Both conditions must be satisfied

 if (input.equals("S") || input.equals("M")) . . .
 At least one of the conditions must be satisfied

32

Boolean Operators (cont.)
 if (!input.equals("S")) . . .

 Inverts the condition – if input is not “S”

 Truth tables

 Expressions can be simplified using rules of
Boolean algebra - e.g. see Topic 6.5 (pg 218)

FalseAnyFalse
FalseFalseTrue
TrueTrueTrue
A && BBA

FalseFalseFalse
TrueTrueFalse
TrueAnyTrue

A||BBA

TrueFalse
FalseTrue
!AA

33

Boolean Operators:
Lazy/Short-Circuit Evaluation

 && and || operators computed from left to
right; stop evaluation as soon as truth value
can be determined
 ‘and’: if first condition is false, skips the second
 ‘or’: if first condition is true, skips the second

if (input != null && Integer.parseInt(input) > 0) . . .

34

Predicate Methods

 Methods that return boolean value
public class BankAccount {
 . . .
 public boolean isOverdrawn() {
 return balance < 0;
 }

 Can be used in conditions
if (harrysChecking.isOverdrawn()) . . .

35

Useful Predicate Methods

 Character class
 isDigit
 isLetter
 isUpperCase
 isLowerCase

if (Character.isUpperCase(ch)) . . .

 Scanner class: hasNextInt, hasNextDouble

if (in.hasNextInt()) n = in.nextInt();

36

Boolean Variables
private boolean married;

 Can store a truth value, or the outcome of a
condition expression

 married = input.equals("M");

 Can be used in expressions
 if (married) . . . else . . .
 if (!married) . . .

7

37

Boolean Variables: ‘Flags’
 Sometimes also called ‘flags’

 Think carefully about names of variables
 maritalStatus vs. married

 Don’t write tests like this:
 if (married == true) . . . // Don't
 if (married == false) . . . // Don't

 Use this instead:
 if (married) . . .
 if (!married) . . .

38

Artificial Intelligence
 Serious research: mid-1950s
 Successes?

 Chess
 Theorem-proving
 OCR

 Failures?
 Translation
 Grammar-checking

 Most ‘AI’ techniques don’t actually imitate human
thinking

 Ethical issues? . . .

