
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2005

Lecture Unit 6 - Decisions

2

Lecture Outline

 Implementing decisions using if statements
 Grouping statements into blocks
 Comparing numbers, strings, and objects
 Using Boolean operators and variables

CSC120 — Berry College — Fall 2005

3

Making Decisions
 Computer programs often need to make decisions

 Take different actions depending on some condition(s)
 Example: Can’t withdraw more money than in

account balance
 “If amount-to-withdraw is less than available balance then

deduct from balance; otherwise charge a penalty to the
balance.”

if (amount <= balance)
 balance = balance - amount;

4

if/else Statement
 Does this work?

if (amount <= balance)
 balance = balance - amount;
if (amount > balance)
 balance = balance - OVERDRAFT_PENALTY;

 How about this?
if (amount <= balance)
 balance = balance - amount;
else
 balance = balance - OVERDRAFT_PENALTY;

5

Types of Statements
 Simple

 balance = balance - amount;

 Compound
 if (amount <= balance) balance = balance - amount;

 Block
 Groups multiple statements together
 Can be used anywhere a single statement is used

{
 double newBalance = balance - amount;
 balance = newBalance;
}

6

Syntax: if Statement

if (condition) statement

if (condition) statement1 else statement2

Purpose:Purpose:
To execute a statement(s) depending on whether
a condition is true or false

2

7

Syntax: Block Statement
{

statement1
statement2
...

}

Purpose:Purpose:
To group several statements together to form a

single statement

8

Brace Layout
 Doesn’t matter to compiler – matters to human
 Two suggested styles – choose one and stick to it

if (amount <= balance)
{
 double newBalance = balance - amount;
 balance = newBalance;
}

 or
if (amount <= balance) {
 double newBalance = balance - amount;
 balance = newBalance;
}

9

Indentation
 Another very critical way to

make programs readable
for humans

 Use spaces instead of tab
key

 2, 3, or 4 spaces are best
 Tips

 Always type the beginning and
ending braces first, then fill in
between

 Put comment after closing
brace to indicate what it
matches

public class BankAccount
{
 . . .
 public void withdraw(double amt)
 {
 if (amt <= balance)
 {
 double newBal = balance - amt;
 balance = newBal;
 } // end if
 } // end withdraw method
 . . .
} // end BankAccount class

public class BankAccount {
. . .
public void withdraw(double amt)
{
if (amt <= balance)
{
double newBal = balance - amt;
balance = newBal;
}
} . . .
}

10

Comparing Values

 Relational operators

 == operator denotes equality testing

Not equal≠!=
Equal===
Less than or equal≤<=
Less than<<
Greater than or equal≥>=
Greater than>>
DescriptionMath NotationJava

a = 5; // Assign 5 to a
if (a == 5) . . . // Test whether a equals 5

11

double r = Math.sqrt(2);
double d = r * r -2;
if (d == 0)
 System.out.println("sqrt(2)squared minus 2 is 0”);
else
 System.out.println("sqrt(2)squared minus 2 is not 0 but " + d);

sqrt(2)squared minus 2 is not 0 but 4.440892098500626E-16

Comparing Floating Point

 Don’t compare floating point numbers for (exact)
equality ==
 Doesn’t work because of roundoff errors

 Instead, check if they are close enough (up to a
desired threshold)

12

Comparing Floating Point
(Correctly)

 Test whether (absolute value of) the
difference between two number is close to 0
 Threshold often referred to as ε – ‘epsilon’

 In Java:

!

x " y # $

final double EPSILON = 1E-14;
. . .
if (Math.abs(x - y) <= EPSILON)
 // x is approximately equal to y

3

13

Comparing Strings
 Don’t use == for strings either!

if (input == "Y") // WRONG!!!

 Use the equals method
if (input.equals("Y")) . . .

 == tests identity; equals tests equal contents
 Will see this again in ‘Comparing Objects’ slides

 To test equality ignoring upper/lowercase (‘Y’ or ‘y’)
if (input.equalsIgnoreCase("Y")) . . .

14

Comparing Order of Strings
 Use the compareTo method

 s.compareTo(t) < 0 means s comes before t
 s.compareTo(t) > 0 means s comes after t
 s.compareTo(t) == 0 means s and t are equal

 Java’s ‘dictionary’ order is according to Unicode
 ‘car’ comes before ‘cargo’
 All uppercase letters come before lowercase

 ‘Hello’ comes before ‘car’
 Numbers come before letters

 ‘1’ comes before ‘a’

 See Appendix B in textbook

15

Comparing Objects
 Like strings, == tests identity; equals tests contents

 box1 != box3 but box1.equals(box3)
 box1 == box2

 Warning: equals method must be defined properly
by the class before you can use it

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

16

Object References
Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

17

Testing for null
 Object variable may be set to null
 Indicates ‘no object’

String middleInitial = null; // Not set
if (. . .)
 middleInitial = middleName.substring(0, 1);

 Can be used as a condition (use ==):
if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
else
 System.out.println(firstName + " " + middleInitial
 + ". " + lastName);

18

Strings and null

 Empty string is ""
 Valid string of length 0

 null indicates a string variable does not
refer to anything, not even an empty string

 Always test for null using == not the equals
method

4

19

Conditions with Side Effects
 Avoid in if statements!

 Bad programming practice
 Side effects: assignment, increment, decrement

if ((d = b * b - 4 * a *c) >= 0) r = Math.sqrt(d);

if (n-- > 0) . . .

 Can occasionally be useful to simplify loops
 Next chapter

20

Multiple Alternatives
 Sequences of comparisons

if (condition1) statement1;
else if (condition2) statement2;
. . .
else statementN;

 The first matching condition is executed
 Order matters!

if (richter >= 0) // always passes
 r = "Generally not felt by people";
else if (richter >= 3.5) // not tested
 r = "Felt by many people, no destruction. . .

Earthquake.java
EarthquakeTester.java

21

if vs. if/else
 Consider carefully which one is appropriate to use

if (richter >= 8.0)
 r = "Most structures fall";
if (richter >= 7.0)
 r = "Many buildings destroyed";
if (richter >= 6.0)
 r = "Many buildings considerably damaged, some collapse";
if (richter >= 4.5)
 r = "Damage to poorly constructed buildings";
if (richter >= 3.5)
 r = "Felt by many people, no destruction";
if (richter >= 0)
 r = "Generally not felt by people";
return r;

22

Nested Branches
 One if statement inside another

if (condition1) {
 if (condition1A)
 statement1A;
 else
 statement1B;
} else
 statement2;

23

Example: Computing Taxes

If your filing status is marriedIf your filing status is single

31%Amount over $86,50031%Amount over $51,900

28%Amount over
$35,800, up to
$86,500

28%Amount over $21,451,
up to $51,900

15%$0 … $35,80015%$0 … $21,450
PercentageTax BracketPercentageTax Bracket

24

Taxes Flowchart

5

25

Tax Program

 TaxReturn.java
 TaxReturnTester.java

 Beware ‘Dangling else’: pg 210

26

Preparing Test Cases
 Test cases should achieve complete

coverage of input possibilities

 Tax program
 2 filing possibilities
 3 tax brackets
 = 6 possible combinations

 To test the program, select 6 valid inputs
and at least 1 invalid input (negative income)

27

Selection Operator
condition ? value1 : value2

 Combines values to yield another value
depending on condition
 if construct combines statements

if (x >= 0) y = x; else y = -x;
y = x >= 0 ? x : -x;

28

switch Statement

 Replaces sequence of if/else/else
comparing single integer value against
constant alternatives

int digit;
. . .
if (digit == 1)
 System.out.print("one");
else if (digit == 2)
 System.out.print("two");
else if (digit == 3)
 System.out.print("three");
. . .
else if (digit == 9)
 System.out.print("nine");
else
 System.out.print("error");

switch (digit) {
 case 1: System.out.print("one");
 break;
 case 2: System.out.print("two");
 break;
 case 3: System.out.print("three");
 break;
 . . .
 case 9: System.out.print("nine");
 break;
 default: System.out.print("error");
 break;
}

29

switch Statement (cont.)

 Case values must be constants and must be
integers, characters, or enumerated
constants
 Cannot be used with floating point, string, or

objects
 Without break statements, execution ‘falls

through’ to the next case until the end

30

The boolean Type

 George Boole (1815-1864): pioneer in the
study of logic

 Value of an expression like amount < 100 is
either true or false

 boolean type: one of these two truth values
 Sometimes referred to as 0 and 1

double amount = 0;
boolean b = amount < 1000;
System.out.println(b);

6

31

Boolean Operators
 Used to combine boolean expressions

 && — ‘and’
 || — ‘or’ (to type |, use ‘shift’ key + ‘\’)
 ! — ‘not’
 Also called logical operators

 if (0 < amount && amount < 1000) . . .
 Both conditions must be satisfied

 if (input.equals("S") || input.equals("M")) . . .
 At least one of the conditions must be satisfied

32

Boolean Operators (cont.)
 if (!input.equals("S")) . . .

 Inverts the condition – if input is not “S”

 Truth tables

 Expressions can be simplified using rules of
Boolean algebra - e.g. see Topic 6.5 (pg 218)

FalseAnyFalse
FalseFalseTrue
TrueTrueTrue
A && BBA

FalseFalseFalse
TrueTrueFalse
TrueAnyTrue

A||BBA

TrueFalse
FalseTrue
!AA

33

Boolean Operators:
Lazy/Short-Circuit Evaluation

 && and || operators computed from left to
right; stop evaluation as soon as truth value
can be determined
 ‘and’: if first condition is false, skips the second
 ‘or’: if first condition is true, skips the second

if (input != null && Integer.parseInt(input) > 0) . . .

34

Predicate Methods

 Methods that return boolean value
public class BankAccount {
 . . .
 public boolean isOverdrawn() {
 return balance < 0;
 }

 Can be used in conditions
if (harrysChecking.isOverdrawn()) . . .

35

Useful Predicate Methods

 Character class
 isDigit
 isLetter
 isUpperCase
 isLowerCase

if (Character.isUpperCase(ch)) . . .

 Scanner class: hasNextInt, hasNextDouble

if (in.hasNextInt()) n = in.nextInt();

36

Boolean Variables
private boolean married;

 Can store a truth value, or the outcome of a
condition expression

 married = input.equals("M");

 Can be used in expressions
 if (married) . . . else . . .
 if (!married) . . .

7

37

Boolean Variables: ‘Flags’
 Sometimes also called ‘flags’

 Think carefully about names of variables
 maritalStatus vs. married

 Don’t write tests like this:
 if (married == true) . . . // Don't
 if (married == false) . . . // Don't

 Use this instead:
 if (married) . . .
 if (!married) . . .

38

Artificial Intelligence
 Serious research: mid-1950s
 Successes?

 Chess
 Theorem-proving
 OCR

 Failures?
 Translation
 Grammar-checking

 Most ‘AI’ techniques don’t actually imitate human
thinking

 Ethical issues? . . .

