
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2005

Lecture Unit 7 - Iteration

2

Lecture Outline

 Programming loops (iteration)
 Simple GUI animation
 Understand common loop errors
 Nested loops
 Processing input
 File input/output
 Random numbers and simulations

CSC120 — Berry College — Fall 2005

3

Cannonball

 Exercise P7.3
 Cannonball.java
 CannonTester.java

4

while Loop
 Looping = Iteration = Repetition

while (condition)
statement

 while statement repeatedly executes a
block of code as long as condition is true
double curTime = 0.00;
while (curTime <= 20.0) {
 ball.updatePosition(deltaT);
 curTime += deltaT;
}

5

Counting Program
int count, number, sum;

System.out.println("Enter a number to count up to: ");
Scanner in = new Scanner(System.in);
number = in.nextInt();

count = 1;
sum = 0;
while (count <= number) {
 System.out.println(count);
 sum += count;
 count++;
}

System.out.println();
System.out.println("The sum is: " + sum);

 Loop body

 Termination test

 Initialization

6

Side Topic:
Simple GUI Animation
 Basic idea: Add a Timer object to your component

class
 Every time the timer goes off (e.g. 10 msec) update the

display

 Imports needed
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JComponent;
import javax.swing.Timer;

 CannonballComponent.java
 CannonballViewer.java

2

7

GUI Animation Skeleton
public class ComponentName
 extends JComponent
 implements ActionListener {
 . . .

 /**
 Starts the timer going by constructing a Timer object with the
 frequency (in milliseconds) of Timer activations and the object ('this')
 that will be handling the Timer events
 */
 public void animate() {
 timer = new Timer((int)Math.round(deltaT * 1000), this);
 timer.start();
 }

 /**
 Processes a Timer activation event
 */
 public void actionPerformed(ActionEvent e) {
 // Code to update the state of the object
 // should go here
 . . .

 repaint(); // repaint the component on the screen
 }

 Timer timer; // timer instance variable
 . . . // other instance variables (fields)
} 8

Infinite Loops
count = 1;
sum = 0;
while (count <= number) {
 System.out.println(count);
 sum += count;
}

// (two errors in this code?)
count = number; // count down from number
sum = 0;
while (count <= number) {
 System.out.println(count);
 sum += count;
 count++;
}

 Stop a running
program using
‘Ctrl’+ ‘c’ keys

9

count = 1;
sum = 0;
while (count < number) {
 count++;
 System.out.println(count);
 sum += count;
}

Off-by-One Errors

 Common type of error when programming loops
 Work through simple test cases to avoid these errors
 Common issues:

 Should variable start at 0 or 1 ?
 Should test condition be < or <= ?
 Where should the loop variable be updated?

 Note: when processing strings, loops often start at 0 and use < 10

do Loop
 Executes the loop body at least once

do
statement

while (condition);

 Common use: Validating input

double value;
do {
 System.out.print("Please enter a positive number: ”);
 value = in.nextDouble();
} while (value <= 0);
 . . .

11

Replacing do with while

 Introduce a boolean control variable

double value;

boolean done = false;
while (!done) {
 System.out.print("Please enter a positive number: ”);
 value = in.nextDouble();

 if (value > 0) done = true;
}
. . .

12

A Common Loop Idiom
i = start;
while (i <= end) {
 . . .
 i++;
}

 Special syntax supports this idiom

for (i = start; i <= end; i++) {
 . . .
}

3

13

for Loop
for (initialization ; condition ; update)

statement

 Use a for loop when a variable runs from a
starting to end value with constant increment
or decrement

 Easy to abuse for notation – any
expressions can be put in the header

for (rate = 5; years-- > 0;
 System.out.print(balance)) . . .

14

How for Loops Work
for (initialization ; condition ; update)

body

Evaluate initialization

Evaluate condition

Execute body

Evaluate update

End loop

true false

15

for Loops: Common Errors
 Extra semicolon

sum = 0;
for (i = 1; i <= 10; i++);
 sum = sum + i;
System.out.println(sum);

 Missing semicolon
for (years = 1; (balance = balance + balance *
 rate / 100) < targetBalance; years++)
System.out.println(years);

 Using != condition instead of <=
for (i = 1; i != 10; i+=2) . . .

16

Variable Scope in for Loops
 Scope: the area of code in which an identifier

(name) is defined/can be used

 Possible to declare a new variable in the header of
a for loop - only has scope within the loop

for (int i = 1; i <= n; i++) {
 . . .
}
// i is no longer defined here

17

Commas in for Statements
 Header of a for loop can contain multiple

initializations/updates, separated by commas
 For example, this code:

product = 1;
for (n = 1; n <= 10; n++)
 product = product * n;

 Can be rewritten as:
for (n=1, product=1; n<=10; product=product*n, n++)
 ;

 Considered ‘clever’ but not necessarily good coding
practice

18

Fibonacci Numbers

 Write a program to compute the n’th
Fibonacci number

f1 = 1;
f2 = 1;

cur = 3;
while (cur <= n) {
 long fnew = f1 + f2;
 f1 = f2;
 f2 = fnew;
 cur++;
}

System.out.println(n + "th Fibonnaci number is: " + f2);

f1 = 1;
f2 = 1;

for (cur = 3; cur <= n; cur++) {
 long fnew = f1 + f2;
 f1 = f2;
 f2 = fnew;
}

4

19

Nested Loops
 Often one loop may be nested (contained) in another

 Typical example: Printing table of rows and columns

 Write a program to print out a triangular shape, given
a maximum width (e.g. 5):

[]
[][]
[][][]
[][][][]
[][][][][]

20

Nested Loops

 Pythagorean Triples
 Set of integer values such that

 Write a program to find all such triples,
where the side lengths are less than 100

 PythagTriples.java

!

sideA
2

+ sideB
2

= hyp
2

sideA

sideB

hyp

21

Processing Sentinel Values
 Sentinel: value that is not valid input and indicates

the end of input
 0 or -1 are not always good sentinel values

Enter value, Q to quit: 1
Enter value, Q to quit: 2
Enter value, Q to quit: 3
Enter value, Q to quit: 4
Enter value, Q to quit: Q
Average = 2.5
Maximum = 4.0

 DataSet.java 22

Loop and a Half

 Sometimes the termination condition can only
be checked in the middle of a loop
 Then, introduce a boolean variable to control the loop

boolean done = false;
while (!done) {
 System.out.print("Enter value, Q to quit: ");
 String input = in.next();
 if (input.equalsIgnoreCase("Q"))
 done = true;
 else {
 double x = Double.parseDouble(input);
 data.add(x);
 }
}

System.out.println("Average = " + data.getAverage());
System.out.println("Maximum = " + data.getMaximum());

23

break Statement

 Used to break out of a switch statement
 Also used to exit (immediately) a while, for,

or do loop
 See Advanced Topic 7.4 (pg 258-259)

while (true) {
 System.out.print("Enter value, Q to quit: ");
 String input = in.next();
 if (input.equalsIgnoreCase("Q"))
 break;
 double x = Double.parseDouble(input);
 data.add(x);
}

24

File Input/Output
 (Section 16.1)

 Two ways of storing data in files
 Text format – human readable sequence of

characters
 Convenient for humans

 Binary format – bytes of data
 More compact and efficient

 We will use
 Scanner class to read input from text files
 PrintWriter class to write output to text files

5

25

Reading Text File
 First construct FileReader object with the name of the

input file
 Then use it to construct a Scanner object
 Use the Scanner object for input just as if it was

keyboard input
 Use next, nextLine, nextInt, nextDouble methods

FileReader reader = new FileReader("input.txt");
Scanner in = new Scanner(reader);

 After done reading input, call the close method on the
FileReader object

26

Writing Text File
 Construct a PrintWriter object with the name of

the output file
 Use print, println, printf methods

PrintWriter out = new PrintWriter("output.txt");

 Close the file when done
 Otherwise not all output may be written to the file

out.close();

27

Skeleton Code for File
Input/Output
// import necessary classes
import java.io.IOException;
import java.io.PrintWriter;
import java.io.FileReader;
import java.util.Scanner;

public class . . . {

 public . . . { // method
 . . .
 try {
 // Do file input/output stuff here
 // . . .

 } catch (IOException exc) {
 System.out.println("Error processing file: " + exc);
 }
 . . .
 }
}

LineNumberer.java
28

Random Numbers and
Simulation

 In a simulation, you repeatedly generate
random numbers and use them to simulate an
activity

Random generator = new Random();
int n = generator.nextInt(a); // 0 <= n < a
double x = generator.nextDouble(); // 0 <= x < 1

29

Random Numbers
 Random class (java.util package) provides a

(pseudo)random number generator
 Produces long sequences of non-repeating numbers that

behave like a random sequence
 Two useful methods

 nextInt(n) – returns ‘random’ integer between 0
(inclusive) and n (exclusive)

 nextDouble() – returns ‘random’ floating-point number
between 0.0 (inclusive) and 1.0 (exclusive)

 Die.java
 DieTester.java

30

Buffon Needle Experiment

6

31

Needle Position
 When does a needle fall on a line?

 Needle length = 1in, distance between lines = 2in

 Generate random ylow between 0 and 2
 Generate random angle α between 0 and

180 degrees
 yhigh = ylow + sin(α)
 Hit if yhigh ≥ 2

Needle.java
NeedleTester.java

