Principles of Computer

Lecture Outline

Programming loops (iteration)
Simple GUI animation

e Understand common loop errors
Nested loops

Processing input

e File input/output

Random numbers and simulations

CSC120 — Beny College — Fall 2005

while Loop

e Looping = Iteration = Repetition

while (condition)
statement

¢ while statement repeatedly executes a
block of code as long as condition is true

double curTime = 0.00;

while (curTime <= 20.0) {
ball.updatePosition(deltaT);
curTime += deltaT;

} .

Science I
. [X X J
Prof. Nadeem Abdul Hamid | ee e
CSC 120 - Fall 2005 | @@
Lecture Unit 7 - Iteration
1
eoo
eoo
o0
.
Cannonball
e Exercise P7.3
[]
[]

3
eoo
eoo
o0
.

Counting Program
int count, number, sum;
System.out.println("Enter a number to count up to: ");
Scanner in = new Scanner(System.in);
number = in.nextInt(); TSR
Initialization
count = 1;
sum = 0; Termination test
while (count <= number) {
System.out.println(count);
sum += count;
count++; Loop body

System.out.printlnQ);
System.out.println("The sum is:

+ sum);

Side Topic:
Simple GUI Animation

e Basic idea: Add a Timer object to your component
class

Every time the timer goes off (e.g. 10 msec) update the
display

e Imports needed
import java.awt.event.ActionEvent;
import java.awt.event.ActionlListener;
import javax.swing.JComponent;
import javax.swing.Timer;

GUI Animation Skeleton

public class ComponentName
extends JComponent
implements ActionListener {

e
Starts the timer going by constructing a Timer object with the
frequency (in milliseconds) of Timer activations and the object ('this')
that will be handling the Timer events

public void animate() {
timer = new Timer((int)Math.round(deltaT * 1000), this);
timer.start();

e
Processes a Timer activation event
public void actionPerformed(ActionEvent e) {

// Code to update the state of the object
/7 should go here

repaint();

// repaint the component on the screen

Timer timer; // timer instance variable
. // other instance variables (fields)

Infinite Loops

count = 1;

sum = 0;

while (count <= number) {
System.out.println(count);
sum += count;

}

// (two errors in this code?)
count = number; // count down from number
sum = 0;
while (count <= number) {
System.out.println(count);
sum += count;
count++;

e Stop a running
program using
‘Ctrl'+ ‘'c’ keys

Off-by-One Errors

count = 1;
sum = 0;
while (count < number) {
count++;
System.out.println(count);
sum += count;
}
e Common type of error when programming loops
e Work through simple test cases to avoid these errors
e Common issues:
Should variable start at 0 or 1 ?
Should test condition be < or <= ?
Where should the loop variable be updated?

¢ Note: when processing strings, loops often start at 0 and use <

do Loop

e Executes the loop body at least once

do
statement
while (condition);

e Common use: Validating input

double value;

do {
System.out.print("Please enter a positive number: ”);
value = in.nextDouble();

} while (value <= 0);

Replacing do with while

e Introduce a boolean control variable

double value;

boolean done = false;

while (!done) {
System.out.print("Please enter a positive number: ”);
value = in.nextDouble();

if (value > 0) done = true;

A Common Loop Idiom

i = start;
while (1 <= end) {

s
e Special syntax supports this idiom

for (i = start; 1 <= end; i++) {

for Loop

for (initialization ; condition ; update)
Sstatement

e Use a for loop when a variable runs from a
starting to end value with constant increment
or decrement

e Easy to abuse for notation — any

expressions can be put in the header
for (rate = 5; years-- > 0;
System.out.print(balance)) . . .

How for Loops Work

for (initialization ; condition ; update)
body

{ Evaluate initialization }
T

Evaluate condition

for Loops: Common Errors

e Extra semicolon
sum = 0;
for (i=1; 1 <= 10; i++);
sum = sum + i;
System.out.println(sum);

e Missing semicolon
for (years = 1; (balance = balance + balance *
rate / 100) < targetBalance; years++)
System.out.println(years);

e Using != condition instead of <=
for Ci=1; 1 !=10; i+=2) . . .

[Execute body End loop
Evaluate update
1
o0
(XXd
o0
L]

Variable Scope in for Loops

e Scope: the area of code in which an identifier
(name) is defined/can be used

e Possible to declare a new variable in the header of
a for loop - only has scope within the loop

for Cint i =1; 1 <=n; i++) {

3

// i is no longer defined here

Commas in for Statements

Header of a for loop can contain multiple
initializations/updates, separated by commas
For example, this code:
product = 1;
for (n=1; n <= 10; n++)
product = product * n;

Can be rewritten as:
for (n=1, product=1; n<=10; product=product*n, n++)

Considered ‘clever’ but not necessarily good coding
practice

Fibonacci Numbers

e Write a program to compute the n’th
Fibonacci number

fl=1; fl=1;
f2 = 1; f2 =1;
cur = 3; for (cur = 3; cur <= n; cur++) {
while C cur <= n) { long fnew = f1 + f2;
long fnew = f1 + f2; f1l = f2;
fl = f2; f2 = fnew;
f2 = fnew; ¥
Cur++;

System.out.println(n + "th Fibonnaci number is: " + f2);

Nested Loops

e Often one loop may be nested (contained) in another
Typical example: Printing table of rows and columns

e \Write a program to print out a triangular shape, given
a maximum width (e.g. 5):

01

(101
0o
(1000
10100101

Processing Sentinel Values

e Sentinel: value that is not valid input and indicates
the end of input
0 or -1 are not always good sentinel values

Enter value, Q to quit:
Enter value, Q to quit:
Enter value, Q to quit:
Enter value, Q to quit:
Enter value, Q to quit:
Average = 2.5

Maximum = 4.0

it
L]
Nested Loops
e Pythagorean Triples
Set of integer values such that L
sideA® + sideB* = hyp®
sideB
e Write a program to find all such triples,
where the side lengths are less than 100
[]
i3
L]

Loop and a Half

Sometimes the termination condition can only
be checked in the middle of a loop
Then, introduce a boolean variable to control the loop

boolean done = false;
while (!done) {
System.out.print("Enter value, Q to quit: ");
String input = in.nextQ);
if (input.equalsIgnoreCase("Q"))
done = true;
else {
double x = Double.parseDouble(input);
data.add(x);

}

System.out.println("Average = " + data.getAverage());
System.out.println("Maximum = " + data.getMaximum()); 22

break Statement

e Used to break out of a switch statement

e Also used to exit (immediately) a while, for,
or do loop
See Advanced Topic 7.4 (pg 258-259)

while (true) {
System.out.print("Enter value, Q to quit: ");
String input = in.next(Q);
if (input.equalsIgnoreCase("Q"))
break;
double x = Double.parseDouble(input);
data.add(x);

File Input/Output

(Section 16.1)
e Two ways of storing data in files
Text format — human readable sequence of
characters
Convenient for humans
Binary format — bytes of data
More compact and efficient
e We will use
Scanner class to read input from text files
PrintWriter class to write output to text files

Reading Text File

First construct FileReader object with the name of the
input file
Then use it to construct a Scanner object

Use the Scanner object for input just as if it was
keyboard input

Use next, nextLine, nextInt, nextDouble methods

FileReader reader = new FileReader("input.txt");
Scanner in = new Scanner(reader);

After done reading input, call the close method on the
FileReader object

Writing Text File

e Construct a PrintWriter object with the name of
the output file
Use print, println, printf methods

PrintWriter out = new PrintWriter("output.txt");

o Close the file when done
Otherwise not all output may be written to the file

out.closeQ);

Skeleton Code for File
Input/Output

// import necessary classes
import java.io.IOException;
import java.io.PrintWriter;
import java.io.FileReader;
import java.util.Scanner;

public class . . . {

public . . . { // method
wry
// Do file input/output stuff here
VZ2RNNa

} catch (IOException exc) {
System.out.println("Error processing file: " + exc);

Random Numbers and
Simulation

e In a simulation, you repeatedly generate
random numbers and use them to simulate an
activity

Random generator = new Random();
int n = generator.nextInt(a); // 0 <=n < a
double x = generator.nextDouble(); // @ <= x < 1

Random Numbers

e Random class (java.util package) provides a
(pseudo)random number generator

Produces long sequences of non-repeating numbers that
behave like a random sequence

e Two useful methods
nextInt(n) —returns ‘random’ integer between @
(inclusive) and n (exclusive)
nextDouble() — returns ‘random’ floating-point number
between 0.0 (inclusive) and 1.0 (exclusive)

Buffon Needle Experiment

Needle Position

e When does a needle fall on a line?
Needle length = 1in, distance between lines = 2in

e Generate random y,,, between 0 and 2

e Generate random angle a between 0 and
180 degrees

® Yhigh = Yiow T Sin(a)

o Hitif =2

