

- Computers also used to ...
- Predict the weather... design airplanes... make movies... run businesses... perform financial transactions... control factories...
- How can one device perform so many tasks?
- What exactly is a 'computer'?

- "A machine (?) that stores and manipulates information under the control of a changeable program."
- Two key elements to definition:
 - Device for manipulating information
 - Calculators, gas pumps also manipulate info... but these are built to only perform single, specific tasks
 - Operate under control of a changeable program
 Can provide step-by-step instructions to a computer telling it what to do
 - By changing the *computer program*, can get the computer to perform different tasks

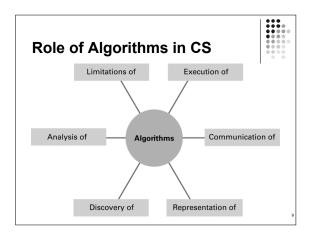
A Universal Machine

- Every computer is a machine for *executing* (carrying out) programs
- Many different types of computers
- Macintoshes, PCs...
- Thousands of other kinds of computers, real and theoretical
- Remarkable discovery of computer science:
 - All different types of computers have same power
 - With suitable programming, each computer can basically do all the things any other can

Programming

- Software (programs) control hardware (the physical machine)
- Building software = programming
- Challenging
 - See the big picture while paying attention to small details, but...
 - Anyone can learn to program
- Become a more intelligent user of computers
- Fun
- Career

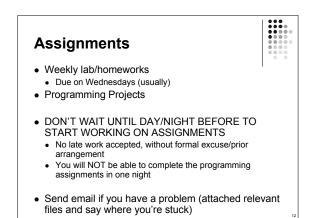
Computer Science (CS)


- Is NOT "the study of computers" • Dijkstra: computers are to CS as telescopes are to
 - astronomy · Aeronautics engineer vs. airplane pilot
- The study of computation
- Fundamental question of CS: What can be
 - computed? • Computers can carry out any process we describe
 - So, what processes can be described in order to solve problems? ٠
- Algorithm: Step-by-step process to solve a problem

Algorithms in CS

- Step-by-step process that solves a problem
 - More precise than a recipe • Eventually has to stop with an answer

 - General description of a process rather than specific to a computer or programming language


- Areas of CS discipline span
 - Theory (mathematics)
 - Experimentation (science)
 - Design (engineering)

Subareas of CS	5
Architecture	hardware-software interface
Artificial Intelligence	thinking machines
Computational Geometry	theory of animation, 3-D models
Graphics	from Windows to Hollywood
 Operating Systems 	run the machine
 Scientific Computing 	weather, hearts
 Software Engineering 	peopleware
 Theoretical CS 	analyze algorithms, models
computation, bioinformatics,	networking, numerical and symbolic databases and information retrieval, security, human-computer interaction.

Course Mechanics

- · Syllabus, lectures notes, assignments, etc. on web page http://cs.berry.edu/csc120
- Class meetings
- Lectures: Mon/Wed/Fri, 11-11:50AM, SCI 233
- Labs: Thurs, 12:30-2:30PM, SCI 228
- Contact
- Office: SCI 354B Phone: 368-5632 • Email: nadeem@acm.org
- Office Hours
 - Mon: 10-11am, 2:30-4pm • Tue: 9-11am
 - Wed: 10-11am, 2:30-4pm
 - Thu: 9-11am
 - Fri: 10-11am
 - (or by appointment...)

Programming Assignments

- Completed programs must 'work'!!!
 - Compile and run (will learn what that means later)
- If you leave programming assignments to the last minute, you will run a major risk of having incomplete work


Materials and Resources

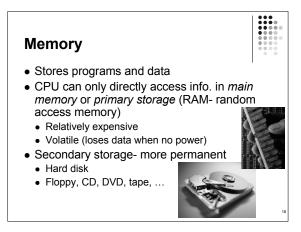
- Textbook:
- Java Concepts, 4th Edition, Cay Horstmann
- Online course website: Check regularly
- Software (in computer lab SCI 228)
 - Java 5.0 (JDK): http://java.sun.com/j2se/1.5.0/download.jsp
 Compiler; runtime system

- DrJava: http://www.drjava.org
 - Editor; development environment

Assessment and Grading

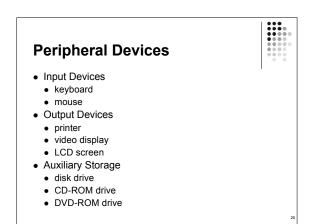
- Class/Lab participation and attendance
- Chapter Quizzes
- Programming Assignments
- Exams -- Tentative dates:
 - Exam 1: Monday, September 25, 2006
 - Exam 2: Wednesday, November 1, 2006
- Final exam: Wednesday, December 13, 2006 (8 10 am)
 Policies (see syllabus)
 - Attendance
 - Academic integrity (*Pair programming)
 - Late work
- Disabilities

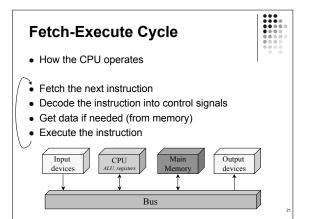
Central Processing Unit (CPU)



- •
- Heart and brain of the machine
- Chip composed of *transistors*, wiring
- Two primary components

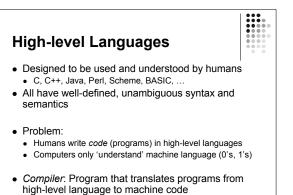
Pentium (left) and PowerPC G3 chips


- Arithmetic/Logic Unit (ALU) performs arithmetic and logical operations
- Control Unit controls the order in which instructions in the program are executed



RAM - Main Memory

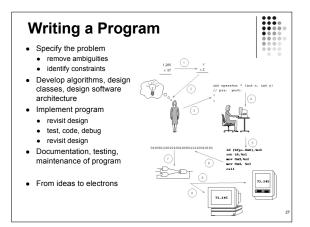
- Ordered sequence of storage cells
- Each holds one piece (a 'word') of data
- 'Data' is a sequence of bits (on/off 0/1)
- 8 bits = 1 byte
- Each memory cell has a unique address (integer number)

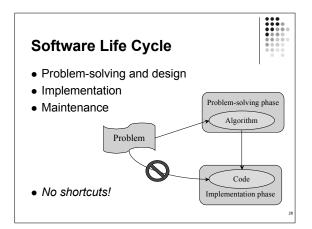


Machine Code Instructions/operations that CPU understands' Different vendors (Intel, Sun, IBM) use different sets of machine instructions Extremely primitive Encoded as (binary) numbers

Programming Languages

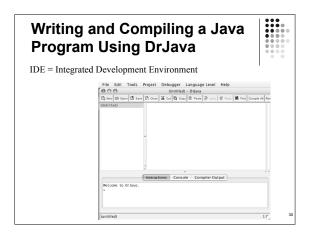
- Could we use English to give instructions to a computer?
 - "I saw the man in the park with the telescope."
 - Who had the telescope? Who was in the park?
 - 'Natural languages' are full of ambiguity and imprecision
 Made up for by lots of redundancy and shared human knowledge
- Computer scientists design precise notations for expressing instructions/statements: programming languages
- · Programming languages have structures with
 - Precise form (syntax)
 - Precise meaning (semantics)

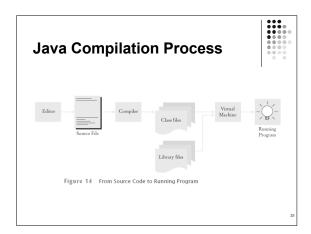

Java Programming Language

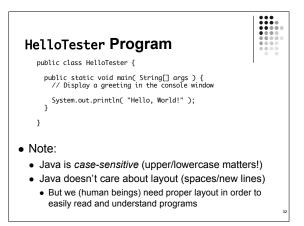

- Benefits
 - Simple (relatively)
 - Safe (security features prevent many 'bad' things)
 - Platform-independent ('write once, run anywhere')
 - Rich library (packages)
 - Lots of code already written for you to do lots of stuff
 - Designed for Internet (applets)

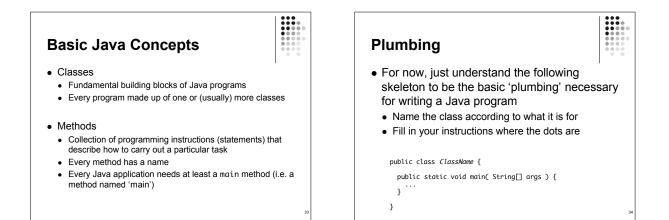
Caveats

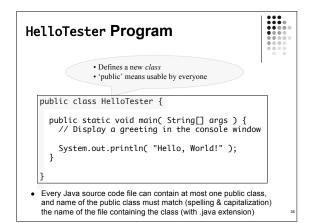
Programs we write in this course will not be fancy
 Today's sophisticated programs/games built by teams or

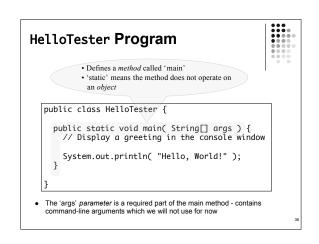

- Today's sophisticated programs/games built by teams of highly skilled programmers, artists, other professionals lave language
- Java language
 - Was designed for professionals, not students
 Suching fortunes change with different versions
 - Evolving features change with different versions (we'll be using 5.0)
 - Cannot learn all Java in one semester
 - In fact, (???) no one can hope to learn entire Java library in a lifetime...
- Goal of this course: Learn how to think about problem solving and expressing precise solutions using a programming language

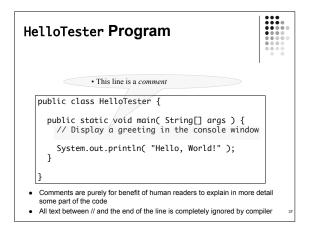


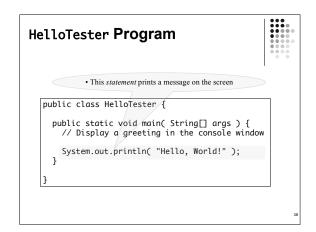


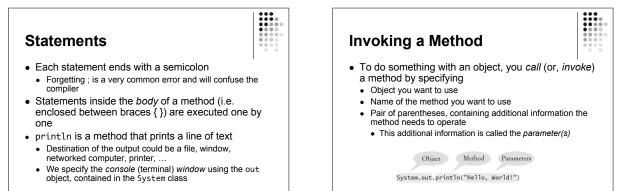

Algorithms and Programs Algorithm instructions for solving a problem in a finite amount of time using a finite amount of data expressed in a precise, but general, way (using English?), independent of type of computer

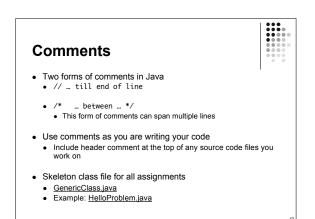

- Program
 - an algorithm written for a particular computer using a particular language











Strings

- Sequence of characters enclosed in quotation marks
 - "Hello, World!"
 - "main"
- Any text strings must be enclosed in quotation marks so compiler treats them as plain text and doesn't try to interpret them as program instructions

Errors

- Syntax errors (compile-time errors)
 Violation of rules of form, detected by compiler
- Logic errors (semantic/run-time errors)
 - Program does something you did not intend when it runsHarder to track down (compiler can't detect)
- Defensive programming
 - Structuring programs and development so that errors are isolated to small parts of program

Predictions that didn't make it

- "I think there is a world market for maybe five computers." Thomas Watson, IBM chair, 1943
- "Where ... the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and weigh only 1.5 tons." – *Popular Mechanics*, 1949
- "Folks, the Mac platform is through—totally." John C. Dvorak, *PC Magazine*, 1998
- "There is no reason anyone would want a computer in their home." – Ken Olsen, Digital Equipment Corp. president, chairman, and founder, 1977
- "I predict the Internet .. will go spectacularly supernova and in 1996 catastrophically collapse." – Bob Metcalfe, 3Com founder, 1995

L. Kappelman, "The Future is Ours," CACM 44:3 (2001), p46