
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 2 - Using Objects

2

Lecture Outline

 Working with types and variables
 Classes and objects
 Methods
 Parameters and return values
 Constructing and using objects
 API documentation

CSC120 — Berry College — Fall 2006

3

Types

 Every value (piece of data) has a type
 "Hello World" : String

System.out : PrintStream
13 : int

 Type determines what can be done with the
values
 Can call println on any PrintStream object
 Can compute sum/product of any int(eger)s

4

Variables
 To store values for use at a later time
 A variable is a storage location in memory with

 Type (what type of data can be stored)
 Name (how you refer to the data)
 Contents (the actual data)

 Variables must be declared before use:
 String greeting = "Hello, World!";

PrintStream printer = System.out;
...
printer.println(greeting);

5

Syntax: Variable Declaration
typeName variableName = value;
or

typeName variableName;

ExampleExample::
String greeting = "Hello, Dave!";
int x;

Purpose:Purpose:
To define a new variable of a particular type and
optionally supply an initial value

6

Identifiers (Names)
 Identifier: name of a variable, method, or class

 Case sensitive: greeting and Greeting different
 Rules

 Made up of letters, digits, underscore _
 No other symbols allowed, including spaces

 May not start with a digit
 May not be a reserved word, like ‘public’

 Conventions
 Variable and method names start with lowercase
 Class names start with uppercase letter
 Use ‘camelCase’ names

 Conventions are useful for other people to be able to
easily read and understand your code

2

7

Assignment Operator
 Use = (assignment operator) to change value of an

existing variable

 Note: = symbol does not refer to equality in Java
 12 = 12;

 Error to use variable that does not have value
assigned

8

Syntax: Assignment
variableName = value;

ExampleExample::
luckyNumber = 12;

Purpose:Purpose:
To assign a new value to a previously defined
variable

9

Objects

 ‘Things’ that you can manipulate in your Java
programs
 Represent entities in real world: bank accounts,

employee records, graphical shapes, computer
game player

 Often don’t know detailed internal structure
(data) of objects
 Can still manipulate objects by calling methods

10

Classes

 Every object belongs to a class
 System.out object (representing terminal output

window) belongs to PrintStream class
 Classes are blueprints

for creating and using
objects
 Define internal data (fields)
 Define operations

(methods)

11

Methods
 Sequence of instructions to carry out some

operation
 Usually accesses internal data of an object
 Every method has a name
 May take some input(s) and return some output

 Objects belonging to the same class all
support the same methods (operations)

 To get a method to carry out its operation,
you call or invoke the method

12

Object/Method Examples
 System.out

 print()
 println()

 "Hello World"
 length()
 toUpperCase()

3

13

Class/Method/Object Summary

 Every object belongs to a class
 Class defines methods for its objects

 These form the public interface of the class
 Class also defines data stored inside objects

 These form the private implementation
 Details (most often) hidden from other

programmers using your objects and methods

14

Method Parameters
 Input provided to a method to give details about

operation to be performed
 println method takes a string parameter (input) to tell

what to print out on the screen

 System.out.println("Hello, World!");
 "Hello World" is an explicit parameter
 Object on which method is called is also an implicit

parameter
 length method of String class needs no explicit

parameters

15

Return Values
 Result of a method’s computation
 length method returns a value: the number of

characters in the string
 Return values can be

 Stored in a variable
 Used as parameter of another method

 String river2 = river.replace("issipp", "our")
 greeting.replace("World", "Dave").length()

16

Method Definition Headers
 String class:

 public int length()
 public String replace(String target,

 String replacement)

 PrintStream class:
 public void println(String output)
 public void println(int output)

 Overloaded methods: two methods with same name
but different parameters

• Return value types
• Parameter types

• “Void” method returns no value

17

Aside: Number Types
 Integers: whole numbers

 14 -7 13000
 Java type: int (or short, or long)

 Floating-point: numbers with fractional parts
 1.3 0.00013 -1300.0
 Java type: double (or float)

 Numbers are of primitive types, not objects
 Number types have no methods
 Numbers can be combined using arithmetic operators +*-/

18

Rectangle Objects
 Objects of type Rectangle describe rectangular

shapes
 Rectangle class is predefined in Java library

 Understand the distinction: Rectangle object is block
of memory storing some data
 In programmer’s mind, object describes a geometric figure

4

19

Constructing Objects
 To ‘make’ a new rectangle:

new Rectangle(5, 10, 20, 30)
 The new operator takes

 name of a class (Rectangle)
 additional parameters required to construct a new object of

that class (x, y, width, height)
 new operator returns the newly constructed object

 Usually one stores the result in a variable:
 Rectangle box = new Rectangle(5, 10, 20, 30);

20

Constructing Objects (cont.)

 Many classes allow construction of objects in
multiple ways
new Rectangle()

 All parameters are taken as being 0 (zero)

21

Syntax: Object Construction

new ClassName(parameters);

ExamplesExamples::
new Rectangle(5, 10, 20, 30)
new Rectangle()

Purpose:Purpose:
To construct a new object, initialize it with the construction
parameters, and return a reference to the constructed object

22

Accessor/Mutator Methods
 Accessor -

 method that accesses object and returns some information
about it
double width = box.getWidth();

 Mutator -
 method that modifies the state of the object

box.translate(15, 25);

 Given box object of unknown dimensions, how do you
translate it so the x-coordinate becomes 0?

23

Writing a Test Program

 Provide a new class
 Define a main method
 Inside the main method, construct object(s)

 Rectangle x=5, y=10, width=20, height=30
 Apply object methods

 Move rectangle 15 pixels horizontally, 25 vertically
 Display results

24

Importing Packages
 Java classes are grouped into packages

 Packages are grouped into a library

 To use class(es) defined in another package, you
must import them at the beginning of your program
file:

import java.awt.Rectangle;
 ‘awt’ = Abstract Windowing Toolkit

 System and String classes are in java.lang
package - automatically imported

5

25

Syntax: Importing Classes

import packageName.ClassName;

ExamplesExamples::
import java.awt.Rectangle;

Purpose:Purpose:
To import a class from a package for use in a program

26

Writing and Testing Code
 Using DrJava…

 Write program that
 constructs two rectangle objects with arbitrary

position/size
 constructs a third rectangle with

 top-left corner halfway between top-left corners of
original two

 Width and height the average of the original two

27

Object References

 (Section 2.10)

 Primitive type variables store actual values
 Object variables store references to objects

 Multiple object variables can refer to same object

Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;

int luckyNum = 13;
int luckyNum2 = luckyNum;

// translate, toUpperCase… 28

API Documentation
 API = Application Programming Interface
 Documentation lists classes and methods in Java

library

 http://java.sun.com/j2se/1.5/docs/api/

 Not possible to memorize entire API
 Use online documentation, or download it to your computer

 Self-Check 22, 23 (pg. 52)

29

Programming

 Exercise P2.10
 Project 2.1

30

Random Fact 2.1: Mainframes

