
1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 3 - Implementing Classes

2

Lecture Outline

 Implementing classes, methods, constructors
 Instance fields and local variables
 Documenting code

 Javadoc

CSC120 — Berry College — Fall 2006

3

Black Boxes

 ‘Black box’ - device whose inner workings are
hidden
 Car - electronic control module
 Java - objects

 Encapsulation - hiding unimportant details
 Abstraction - taking away inessential features

until essence of concept remains

4

Levels of Abstraction: Car
 Users do not need to

understand the ‘black boxes’
 Leads to efficiency, ease-of-use

 Interaction of black box with
outside world is well-defined
 Drivers interact using pedals,

buttons, etc.
 Mechanic tests engine control

module (ECM) sends the right
firing signals to the spark plugs

 ECM manufacturers use
transistors and capacitors,
black boxes magically produced
by an electronics component
manufacturer

5

Levels of Abstraction: Software
 Old times: computer

programs manipulated
primitive types such as
numbers and characters
 Too much for human

programmers
 Solution: Design software ‘black

boxes’
 Abstraction: invent higher-

level data structures
 Encapsulation: programmer

using object knows behavior,
not internal implementation

6

Software Design

 In software design, you can design good and
bad abstractions with equal facility
 Understanding what makes good design is an

important part of the education of a software
engineer

 First, define behavior of a class; then,
implement it

7

Designing a Class: BankAcct
 Behavior of a bank account

 Deposit money
 Withdraw money
 Get balance

 Method definitions
 Access specifier
 Return type
 Name
 Parameter list
 Body

8

Syntax: Method Definition
accessSpecifier returnType

methodName(paramType paramName, …)
{
 method body
};

ExampleExample::
public void deposit(double amount) {

…
}; // end method deposit

Purpose:Purpose:
To define the behavior of a method

9

Constructors
 A constructor initializes the internal data of an object

 Is a special method
 Constructor name must be the same as the class

 Constructor body is executed when a new object is
instantiated

 All constructors of a class have the same name
 Compiler can tell constructors apart because they

take different parameters

10

Syntax: Constructor Definition
accessSpecifier ClassName(paramType paramName, …)
{
 constructor body
};

ExampleExample::
public BankAccount(double initialBalance) {

…
}; // end constructor

Purpose:Purpose:
To define the behavior of a constructor

11

BankAccount Public Interface

 The public
constructors and
methods of a class
form the public
interface

public class BankAccount {

 // Constructors
 public BankAccount() {
 // body - filled in later
 }

 public BankAccount(double initialBalance) {
 // body - filled in later
 }

 // Methods
 public void deposit(double amount) {
 // body - filled in later
 }

 public void withdraw(double amount) {
 // body - filled in later
 }

 public double getBalance() {
 // body - filled in later
 }

 // private fields ... filled in later
}

12

Syntax: Class Definition
accessSpecifier class ClassName
{
 constructors
 methods
 fields
}

ExampleExample::
(see previous slide)

Purpose:Purpose:
To define a class, its public interface, and its
implementation details

13

Using BankAccount

 Write code to instantiate (create) two
accounts with some initial balances, then
transfer money from one account to another

 Write code to empty (withdraw all money
from) a bank account

14

Comments
 Ignored by the computer (compiler)
 Comments make programs easier to understand for

humans
 Use comments liberally, but make them meaningful
 Two forms of Java comments

 Comments between /* and */ can extend over several
lines

 Using two slashes // makes the rest of the line become a
comment

15

javadoc Commenting Style
 Standard form for documentation comments
 javadoc automatically generates HTML (web)

pages describing your classes based on
comments in source code

 javadoc comment starts with /**
 First line describes method/class purpose
 For each parameter, give line starting with @param
 Supply line starting with @return describing return

value

16

javadoc Method Comments
 /**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
 */
 public void withdraw(double amount)
 {
 double newBalance = balance - amount;
 balance = newBalance;
 }

 /**
 Gets the current balance of the bank account.
 @return the current balance
 */
 public double getBalance()
 {
 return balance;
 }

17

/**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
*/
public class BankAccount
{
 ...
}

javadoc Class Comment

 Provide comments for
 Every class
 Every method
 Every parameter
 Every return value

18

javadoc Output

19

Instance Fields
 Object stores its data in instance fields
 Field: storage location inside memory
 Instance: an object of a class

 public class BankAccount
{
 . . .
 private double balance;
}

 Instance field declaration:
 Access specifier (usually private)
 Type of the field (like double)
 Name of the field (like balance)

20

Instance Fields (Syntax)

 Every object of a class has its own set of
instance fields

accessSpecifier class ClassName
{
 ...
 accessSpecifier fieldType fieldName;
 ...
}

ExampleExample::
(see previous slide)

Purpose:Purpose:
To define a field that is present in every object of a class

21

Accessing Instance Fields

 Methods of the same class can access
private fields

 Methods/code outside the class cannot

 Encapsulation = Hiding data (fields) and
providing access through public interface
(methods)

22

public class BankAccount {

 // Constructors
 public BankAccount() {
 // body - filled in later
 }

 public BankAccount(double initialBalance) {
 // body - filled in later
 }

 // Methods
 public void deposit(double amount) {
 // body - filled in later
 }

 public void withdraw(double amount) {
 // body - filled in later
 }

 public double getBalance() {
 // body - filled in later
 }

 private double balance;
}

Implementing Constructors
and Methods

 Constructors contain code
to initialize instance fields
of object

 Some methods do not
return a value

 Other methods return a
result (getBalance)
 Use a return statement

to exit a method
immediately/return a
value

 BankAccount.java

23

Syntax: return Statement
return expression;

or

return;

ExampleExample::
return balance;

Purpose:Purpose:
To specify the value that a method returns, and exit the

method immediately. The return value becomes the
value of the method call expression.

24

Constructor Call Example

 Create a new object of type BankAccount
 Call the second constructor (since a construction parameter is

supplied)
 Set the parameter variable initialBalance to 1000
 Set the balance instance field of the newly created object to

initialBalance
 Return an object reference, that is, the memory location of the

object, as the value of the new expression
 Store that object reference in the harrysChecking variable

BankAccount harrysChecking = new BankAccount(1000);

25

Method Call Example

 Set the parameter variable amount to 500
 Fetch the balance field of the object whose location

is stored in harrysChecking
 Add the value of amount to balance and store the

result in the variable newBalance
 Store the value of newBalance in the balance instance

field, overwriting the old value

harrysChecking.deposit(500);

26

Checkpoint

 How would you implement the translate
method of the Rectangle class?

27

Testing a Class
 Test class (sometimes called a ‘driver class’)

 Class with a main method that contains code to test
another class

 Typical steps:
 Construct one or more objects of the class that is being

tested
 Invoke one or more methods
 Print out one or more results

 Running test program (typical steps):
 Make a new subfolder for your program
 Make two files, one for each class
 Compile both files
 Run the test program BankAccountTester.java

28

Summary: Designing and
Implementing Classes
 Find out what an object of the class is supposed to

do
 Specify the public interface
 Document the public interface
 Determine instance fields
 Implement constructors and methods
 Test the class

 Example: Cash Register
CashRegister.java
CashRegisterTester.java

29

Categories of Variables

 Three categories of variables
 Instance fields (balance in BankAccount)
 Local variables (newBalance in deposit method)
 Parameter variables (amount in deposit method)

 Two important differences
 Lifetime
 Initialization

30

Variable Lifetimes
 Instance variables belong to object

 Remain ‘alive’ until object is no longer being used
 Java runtime system (virtual machine-JVM)

contains program called garbage collector that
periodically reclaims memory space of unused
objects

 Local and parameter variables belong to a
method
 The ‘die’ when the method is exited

31

Variable Initialization

 Local variables must be initialized
 Compiler will complain if you don’t

 Parameter variables are initialized with
argument values in the method call

 Instance fields are initialized with default
value (either 0 or null)
 Common cause of errors: forgetting to initialize

instance variables in a constructor

32

Implicit Parameters
 The implicit parameter of a method is the object on

which the method is invoked
 The this keyword refers to the object that is

passed as the implicit parameter
 Every method has one implicit parameter

 Using the name of an instance field inside the method
means the instance field of the implicit parameter object
 Can always use the keyword this inside a method to

explicitly refer to the implicit parameter
 Exception: static methods do not have implicit parameter

(Ch. 9)

33

Calling One Constructor from
Another

 Also uses the this keyword followed by
parentheses as shorthand

34

Voting Machines

