Principles of Computer
Science 1

Prof. Nadeem Abdul Hamid

CSC 120 — Fall 2006
Lecture Unit 3 - Implementing Classes

Lecture Outline

e Implementing classes, methods, constructors
e Instance fields and local variables

e Documenting code
Javadoc

CSC120 — Berry College — Fall 2006

Black Boxes

e ‘Black box’ - device whose inner workings are
hidden

Car - electronic control module
Java - objects

e Encapsulation - hiding unimportant details

e Abstraction - taking away inessential features
until essence of concept remains

Levels of Abstraction: Car

Driver
»
-~

Automotive
Engineer

Car Parts
Designer

&h

Electronic
e Control Unit

Capacltors
and Transistors

i

Users do not need to
understand the ‘black boxes’

Leads to efficiency, ease-of-use

Interaction of black box with
outside world is well-defined

Drivers interact using pedals,
buttons, etc.

Mechanic tests engine control
module (ECM) sends the right
firing signals to the spark plugs

ECM manufacturers use
transistors and capacitors,

black boxes magically produced

by an electronics component
manufacturer

Levels of Abstraction: Software

Computer User

e Old times: computer

O .

" | programs manipulated
|| primitive types such as

Appiions numbers and characters

. Q¢
Programmer

Too much for human

v
‘LA P programmers

Solution: Design software ‘black

T boxes

O e Abstraction: invent higher-
‘LA e level data structures

— - e Encapsulation: programmer

Programmer

° using object knows behavior,
1..‘5 not internal implementation

Software Design

e |In software design, you can design good and
bad abstractions with equal facility

Understanding what makes good design is an
important part of the education of a software
engineer
e First, define behavior of a class; then,
implement it

Designing a Class: BankAcct

e Behavior of a bank account
Deposit money
Withdraw money
Get balance

e Method definitions

Access specifier
Return type
Name
Parameter list
Body

Syntax: Method Definition

accessSpecifier returnType
methodName(paramType paramName,
{

method body
s

Example:
public void deposit(double amount) {
+s // end method deposit

Purpose:
To define the behavior of a method

)

Constructors

e A constructor initializes the internal data of an object

Is a special method
Constructor name must be the same as the class

e Constructor body is executed when a new object is
instantiated

e All constructors of a class have the same name

e Compiler can tell constructors apart because they
take different parameters

Syntax: Constructor Definition

accessSpecifier ClassName(paramType paramName, ..)

{

constructor body

}s

Example:
public BankAccount(double initialBalance) {

}; // end constructor

Purpose:
To define the behavior of a constructor

10

BankAccount Public Interface

public class BankAccount {

e The public
constructors and
methods of a class
form the public
interface

// Constructors
public BankAccount() {

// body - filled in later
ks

public BankAccount(double initialBalance) {
// body - filled in later
ks

// Methods

public void deposit(double amount) {
// body - filled in later

ks

public void withdraw(double amount) {
// body - filled in later
ks

public double getBalance() {
// body - filled in later
ks

// private fields ... filled in later

11

Syntax: Class Definition

accessSpecifier class ClassName

{

constructors
methods
fields

}

Example:
(see previous slide)

Purpose:
To define a class, its public interface, and its
Implementation details

12

Using BankAccount

e Write code to instantiate (create) two
accounts with some Iinitial balances, then
transfer money from one account to another

e Write code to empty (withdraw all money
from) a bank account

13

Comments

e Ignored by the computer (compiler)

e Comments make programs easier to understand for
humans

e Use comments liberally, but make them meaningful

e [Two forms of Java comments

Comments between /* and */ can extend over several
lines

Using two slashes // makes the rest of the line become a
comment

14

javadoc Commenting Style

e Standard form for documentation comments

e javadoc automatically generates HTML (web)
pages describing your classes based on
comments in source code

e javadoc comment starts with /**

First line describes method/class purpose
For each parameter, give line starting with @param

Supply line starting with @return describing return
value

15

javadoc Method Comments

/**
Withdraws money from the bank account.
@param amount the amount to withdraw
*/
public void withdraw(double amount)

{

double newBalance = balance - amount;
balance = newBalance;

}

/**
Gets the current balance of the bank account.
@return the current balance

*/

public double getBalance()

{

}

return balance;

16

javadoc Class Comment

/**
A bank account has a balance that can be changed by
deposits and withdrawals.

*/

public class BankAccount

1
¥

e Provide comments for
Every class
Every method
Every parameter
Every return value

17

javadoc Output

[BankAccount - Mozilla X

. Eile Edit View Go Bookmarks TJools Window Help

.0000

< fle//home/cay/BigJava/ch03/bank/index htmi

All Classes
BankAccount

A

Method Summary

void

deposit(double amount)
Deposits money into the bank account.

double

yelBalance()

Gets the current balance of the bank account.

void

withdraw(double amount)
Withdraws money from the bank account.

| K|

L4

0% O o7

18

Instance Fields

e Object stores its data in instance fields
e Field: storage location inside memory
e Instance: an object of a class

public class BankAccount

{

br{véte double balance;

}

e Instance field declaration:
Access specifier (usually private)
Type of the field (like double)
Name of the field (like balance)

19

(X X)
o0
o
Instance Fields (Syntax)
e Every object of a class has its own set of
iInstance fields -
accessSpecifier class ClassName balance =
{
ézé.cessSpeci fier fieldType fieldName; momssavings = ——__ @ BankAccount
} balance =
Example:

(see previous slide)

Purpose:
To define a field that is present in every object of a class

20

Accessing Instance Fields

e Methods of the same class can access
private fields

e Methods/code outside the class cannot

e Encapsulation = Hiding data (fields) and
providing access through public interface
(methods)

21

Implementing Constructors 13

and Methods

Constructors contain code
to initialize instance fields
of object

Some methods do not
return a value

Other methods return a
result (getBalance)

Use a return statement
to exit a method
immediately/return a
value

public class BankAccount {

// Constructors
public BankAccount() {

// body - filled in later
ks

public BankAccount(double initialBalance) {
// body - filled in later
ks

// Methods

public void deposit(double amount) {
// body - filled in later

ks

public void withdraw(double amount) {
// body - filled in later
ks

public double getBalance() {
// body - filled in later
ks

private double balance;

22

Syntax: return Statement

return expression;

or
return;

Example:
return balance;

Purpose:

To specify the value that a method returns, and exit the
method immediately. The return value becomes the
value of the method call expression.

23

Constructor Call Example

BankAccount harrysChecking = new BankAccount(1000);

e Create a new object of type BankAccount

e Call the second constructor (since a construction parameter is
supplied)
e Set the parameter variable initialBalance to 1000

e Set the balance instance field of the newly created object to
initialBalance

e Return an object reference, that is, the memory location of the
object, as the value of the new expression

e Store that object reference in the harrysChecking variable

24

Method Call Example

harrysChecking.deposit(500);

e Set the parameter variable amount to 500

e Fetch the balance field of the object whose location
IS stored In harrysChecking

e Add the value of amount to balance and store the
result in the variable newBalance

e Store the value of newBalance in the balance instance
field, overwriting the old value

25

Checkpoint

e How would you implement the translate
method of the Rectangle class?

26

Testing a Class

e Test class (sometimes called a ‘driver class’)
Class with a main method that contains code to test
another class

e T[ypical steps:

Construct one or more objects of the class that is being
tested

Invoke one or more methods
Print out one or more results

e Running test program (typical steps):
Make a new subfolder for your program
Make two files, one for each class
Compile both files
Run the test program

27

Summary: Designing and see
Implementing Classes

Find out what an object of the class is supposed to
do

Specify the public interface
Document the public interface
Determine instance fields

Implement constructors and methods
Test the class

Example: Cash Register

28

Categories of Variables

e Three categories of variables
Instance fields (balance in BankAccount)
Local variables (newBalance in deposit method)
Parameter variables (amount in deposit method)

e Two important differences
Lifetime
Initialization

29

Variable Lifetimes

e |nstance variables belong to object
Remain ‘alive’ until object is no longer being used

Java runtime system (virtual machine-JVM)
contains program called garbage collector that
periodically reclaims memory space of unused
objects

e Local and parameter variables belong to a
method
The ‘die’ when the method is exited

30

Variable Initialization

e Local variables must be initialized
Compiler will complain if you don't

e Parameter variables are initialized with
argument values in the method call

e Instance fields are initialized with default
value (either O or null)

Common cause of errors: forgetting to initialize
Instance variables in a constructor

31

Implicit Parameters

e The implicit parameter of a method is the object on
which the method is invoked

e The this keyword refers to the object that is
passed as the implicit parameter

e Every method has one implicit parameter

Using the name of an instance field inside the method
means the instance field of the implicit parameter object

Can always use the keyword th1is inside a method to
explicitly refer to the implicit parameter

Exception: static methods do not have implicit parameter
(Ch. 9)

32

Calling One Constructor from
Another

e Also uses the this keyword followed by
parentheses as shorthand

33

Voting Machines

