
1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 3 - Implementing Classes

2

Lecture Outline

 Implementing classes, methods, constructors
 Instance fields and local variables
 Documenting code

 Javadoc

CSC120 — Berry College — Fall 2006

3

Black Boxes

 ‘Black box’ - device whose inner workings are
hidden
 Car - electronic control module
 Java - objects

 Encapsulation - hiding unimportant details
 Abstraction - taking away inessential features

until essence of concept remains

4

Levels of Abstraction: Car
 Users do not need to

understand the ‘black boxes’
 Leads to efficiency, ease-of-use

 Interaction of black box with
outside world is well-defined
 Drivers interact using pedals,

buttons, etc.
 Mechanic tests engine control

module (ECM) sends the right
firing signals to the spark plugs

 ECM manufacturers use
transistors and capacitors,
black boxes magically produced
by an electronics component
manufacturer

5

Levels of Abstraction: Software
 Old times: computer

programs manipulated
primitive types such as
numbers and characters
 Too much for human

programmers
 Solution: Design software ‘black

boxes’
 Abstraction: invent higher-

level data structures
 Encapsulation: programmer

using object knows behavior,
not internal implementation

6

Software Design

 In software design, you can design good and
bad abstractions with equal facility
 Understanding what makes good design is an

important part of the education of a software
engineer

 First, define behavior of a class; then,
implement it

7

Designing a Class: BankAcct
 Behavior of a bank account

 Deposit money
 Withdraw money
 Get balance

 Method definitions
 Access specifier
 Return type
 Name
 Parameter list
 Body

8

Syntax: Method Definition
accessSpecifier returnType

methodName(paramType paramName, …)
{
 method body
};

ExampleExample::
public void deposit(double amount) {

…
}; // end method deposit

Purpose:Purpose:
To define the behavior of a method

9

Constructors
 A constructor initializes the internal data of an object

 Is a special method
 Constructor name must be the same as the class

 Constructor body is executed when a new object is
instantiated

 All constructors of a class have the same name
 Compiler can tell constructors apart because they

take different parameters

10

Syntax: Constructor Definition
accessSpecifier ClassName(paramType paramName, …)
{
 constructor body
};

ExampleExample::
public BankAccount(double initialBalance) {

…
}; // end constructor

Purpose:Purpose:
To define the behavior of a constructor

11

BankAccount Public Interface

 The public
constructors and
methods of a class
form the public
interface

public class BankAccount {

 // Constructors
 public BankAccount() {
 // body - filled in later
 }

 public BankAccount(double initialBalance) {
 // body - filled in later
 }

 // Methods
 public void deposit(double amount) {
 // body - filled in later
 }

 public void withdraw(double amount) {
 // body - filled in later
 }

 public double getBalance() {
 // body - filled in later
 }

 // private fields ... filled in later
}

12

Syntax: Class Definition
accessSpecifier class ClassName
{
 constructors
 methods
 fields
}

ExampleExample::
(see previous slide)

Purpose:Purpose:
To define a class, its public interface, and its
implementation details

13

Using BankAccount

 Write code to instantiate (create) two
accounts with some initial balances, then
transfer money from one account to another

 Write code to empty (withdraw all money
from) a bank account

14

Comments
 Ignored by the computer (compiler)
 Comments make programs easier to understand for

humans
 Use comments liberally, but make them meaningful
 Two forms of Java comments

 Comments between /* and */ can extend over several
lines

 Using two slashes // makes the rest of the line become a
comment

15

javadoc Commenting Style
 Standard form for documentation comments
 javadoc automatically generates HTML (web)

pages describing your classes based on
comments in source code

 javadoc comment starts with /**
 First line describes method/class purpose
 For each parameter, give line starting with @param
 Supply line starting with @return describing return

value

16

javadoc Method Comments
 /**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
 */
 public void withdraw(double amount)
 {
 double newBalance = balance - amount;
 balance = newBalance;
 }

 /**
 Gets the current balance of the bank account.
 @return the current balance
 */
 public double getBalance()
 {
 return balance;
 }

17

/**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
*/
public class BankAccount
{
 ...
}

javadoc Class Comment

 Provide comments for
 Every class
 Every method
 Every parameter
 Every return value

18

javadoc Output

19

Instance Fields
 Object stores its data in instance fields
 Field: storage location inside memory
 Instance: an object of a class

 public class BankAccount
{
 . . .
 private double balance;
}

 Instance field declaration:
 Access specifier (usually private)
 Type of the field (like double)
 Name of the field (like balance)

20

Instance Fields (Syntax)

 Every object of a class has its own set of
instance fields

accessSpecifier class ClassName
{
 ...
 accessSpecifier fieldType fieldName;
 ...
}

ExampleExample::
(see previous slide)

Purpose:Purpose:
To define a field that is present in every object of a class

21

Accessing Instance Fields

 Methods of the same class can access
private fields

 Methods/code outside the class cannot

 Encapsulation = Hiding data (fields) and
providing access through public interface
(methods)

22

public class BankAccount {

 // Constructors
 public BankAccount() {
 // body - filled in later
 }

 public BankAccount(double initialBalance) {
 // body - filled in later
 }

 // Methods
 public void deposit(double amount) {
 // body - filled in later
 }

 public void withdraw(double amount) {
 // body - filled in later
 }

 public double getBalance() {
 // body - filled in later
 }

 private double balance;
}

Implementing Constructors
and Methods

 Constructors contain code
to initialize instance fields
of object

 Some methods do not
return a value

 Other methods return a
result (getBalance)
 Use a return statement

to exit a method
immediately/return a
value

 BankAccount.java

23

Syntax: return Statement
return expression;

or

return;

ExampleExample::
return balance;

Purpose:Purpose:
To specify the value that a method returns, and exit the

method immediately. The return value becomes the
value of the method call expression.

24

Constructor Call Example

 Create a new object of type BankAccount
 Call the second constructor (since a construction parameter is

supplied)
 Set the parameter variable initialBalance to 1000
 Set the balance instance field of the newly created object to

initialBalance
 Return an object reference, that is, the memory location of the

object, as the value of the new expression
 Store that object reference in the harrysChecking variable

BankAccount harrysChecking = new BankAccount(1000);

25

Method Call Example

 Set the parameter variable amount to 500
 Fetch the balance field of the object whose location

is stored in harrysChecking
 Add the value of amount to balance and store the

result in the variable newBalance
 Store the value of newBalance in the balance instance

field, overwriting the old value

harrysChecking.deposit(500);

26

Checkpoint

 How would you implement the translate
method of the Rectangle class?

27

Testing a Class
 Test class (sometimes called a ‘driver class’)

 Class with a main method that contains code to test
another class

 Typical steps:
 Construct one or more objects of the class that is being

tested
 Invoke one or more methods
 Print out one or more results

 Running test program (typical steps):
 Make a new subfolder for your program
 Make two files, one for each class
 Compile both files
 Run the test program BankAccountTester.java

28

Summary: Designing and
Implementing Classes
 Find out what an object of the class is supposed to

do
 Specify the public interface
 Document the public interface
 Determine instance fields
 Implement constructors and methods
 Test the class

 Example: Cash Register
CashRegister.java
CashRegisterTester.java

29

Categories of Variables

 Three categories of variables
 Instance fields (balance in BankAccount)
 Local variables (newBalance in deposit method)
 Parameter variables (amount in deposit method)

 Two important differences
 Lifetime
 Initialization

30

Variable Lifetimes
 Instance variables belong to object

 Remain ‘alive’ until object is no longer being used
 Java runtime system (virtual machine-JVM)

contains program called garbage collector that
periodically reclaims memory space of unused
objects

 Local and parameter variables belong to a
method
 The ‘die’ when the method is exited

31

Variable Initialization

 Local variables must be initialized
 Compiler will complain if you don’t

 Parameter variables are initialized with
argument values in the method call

 Instance fields are initialized with default
value (either 0 or null)
 Common cause of errors: forgetting to initialize

instance variables in a constructor

32

Implicit Parameters
 The implicit parameter of a method is the object on

which the method is invoked
 The this keyword refers to the object that is

passed as the implicit parameter
 Every method has one implicit parameter

 Using the name of an instance field inside the method
means the instance field of the implicit parameter object
 Can always use the keyword this inside a method to

explicitly refer to the implicit parameter
 Exception: static methods do not have implicit parameter

(Ch. 9)

33

Calling One Constructor from
Another

 Also uses the this keyword followed by
parentheses as shorthand

34

Voting Machines

