Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 - Fall 2006
Lecture Unit 3 - Implementing Classes

Lecture Outline

e Implementing classes, methods, constructors
e Instance fields and local variables

e Documenting code
e Javadoc

CSCI20— Berry College — Fall 2006

Black Boxes

e ‘Black box’ - device whose inner workings are
hidden

e Car - electronic control module
e Java - objects
e Encapsulation - hiding unimportant details

e Abstraction - taking away inessential features
until essence of concept remains

o0
(IXd
(1]
L[]
Levels of Abstraction: Software
w-:mws-v e Old times: computer
— programs manipulated
‘t‘b b primitive types such as
opiaions) oo numbers and characters
o e Too much for human
‘LA object programmers
’ e Solution: Design software ‘black
Fepiies) o boxes’
o A e Abstraction: invent higher-
‘L Sbfoct level data structures
— o e Encapsulation: programmer
o - using object knows behavior,

‘LA not internal implementation

o0
o0
o
L[]
Levels of Abstraction: Car
— e Users do not need to
. understand the ‘black boxes’
v\ ’ — e Leads to efficiency, ease-of-use
- ‘ o Interaction of black box with
Automotive o™ outside world is well-defined
o e Drivers interact using pedals,
" Electronic buttons, etc.
e “’“"“'l“"“ e Mechanic tests engine control
) il:iﬁf‘ module (ECM) sends the right
car Parts. <" . -
Designer ¢’ firing signals to the spark plugs
4 A e ECM manufacturers use
‘ts Ui, e transistors and capacitors,
i black boxes magically produced
L ﬁl by an electronics component
manufacturer
4
o0
o0
(1]
L[]

Software Design

e In software design, you can design good and
bad abstractions with equal facility
e Understanding what makes good design is an
important part of the education of a software
engineer
e First, define behavior of a class; then,
implement it

Designing a Class: BankAcct

e Behavior of a bank account
e Deposit money
e Withdraw money
e Get balance
e Method definitions
e Access specifier
e Return type
e Name
e Parameter list
e Body

Syntax: Method Definition
accessSpecifier returnType
methodName(paramType paramName, ..)
{
method body
Example:
public void deposit(double amount) {

}; // end method deposit

Purpose:
To define the behavior of a method

Constructors

e A constructor initializes the internal data of an object
e |s a special method
e Constructor name must be the same as the class

e Constructor body is executed when a new object is
instantiated

e All constructors of a class have the same name

e Compiler can tell constructors apart because they
take different parameters

Syntax: Constructor Definition

accessSpecifier ClassName(paramType paramName, ..)
constructor body

Example:
public BankAccount(double initialBalance) {
1 // end constructor

Purpose:
To define the behavior of a constructor

BankAccount Public Interface

public class BankAccount {

e The public
constructors and
methods of a class g socrpcmery iianincs
form the public }
lnterface // Methods

public void deposit(double amount) {
// body - filled in later

// Constructors
public BankAccount() {
// body - filled in later

public void withdraw(double amount) {
// body - filled in later

public double getBalance() {
/7 body - filled in later

// private fields ... filled in later

Syntax: Class Definition

accessSpecifier class ClassName

constructors
methods
fields

Example:
(see previous slide)

Purpose:
To define a class, its public interface, and its
implementation details

Using BankAccount

e Write code to instantiate (create) two
accounts with some initial balances, then
transfer money from one account to another

e Write code to empty (withdraw all money
from) a bank account

Comments

e Ignored by the computer (compiler)
o Comments make programs easier to understand for
humans
e Use comments liberally, but make them meaningful
e Two forms of Java comments
e Comments between /* and */ can extend over several
lines
e Using two slashes // makes the rest of the line become a
comment

javadoc Commenting Style

e Standard form for documentation comments

e javadoc automatically generates HTML (web)
pages describing your classes based on
comments in source code

e javadoc comment starts with /**

e First line describes method/class purpose
e For each parameter, give line starting with @param

o Supply line starting with @return describing return
value

javadoc Class Comment

/**
A bank account has a balance that can be changed by
deposits and withdrawals.

public class BankAccount

}

e Provide comments for
e Every class
e Every method
e Every parameter
e Every return value

javadoc Method Comments

/**
Withdraws money from the bank account.
@param amount the amount to withdraw
*/
public void withdraw(double amount)

double newBalance = balance - amount;
balance = newBalance;

}
Vol

Gets the current balance of the bank account.

@return the current balance
*

public double getBalance()

return balance;

javadoc Output

Elle Edit View Go Bookmarks Jools Window Help
" J Oo O J [fitermomescay/BigJava/cho3/mank/index htmi | S_J
AAII Classes g
canceonn: | |Method Summary [
veid| deposit (double amount)
its money into the bank account. |
double [yt Balance ()
Gets the current balance of the bank account.
void|yithdraw(double amount)
‘Withdraws money from the bank account. ||
Kl I D
001) T

Instance Fields

e Object stores its data in instance fields
e Field: storage location inside memory
e Instance: an object of a class

public class BankAccount
{

;;r'{véte double balance;

o Instance field declaration:
e Access specifier (usually private)
e Type of the field (like double)
o Name of the field (like balance) 19

o000
o000
(1]
L[]
Instance Fields (Syntax)
e Every object of a class has its own set of
instance fields
haryschecking - ..
accessSpecifier class ClassName balance =
z‘:‘c’cessSpecifier fieldType fieldName; momsSavings = . Bankaccount
} e balance =
Example:

(see previous slide)

Purpose:
To define a field that is present in every object of a class

Accessing Instance Fields

o Methods of the same class can access
private fields

o Methods/code outside the class cannot

e Encapsulation = Hiding data (fields) and
providing access through public interface
(methods)

Implementing Constructors | i
and Methods

public class BankAccount {

Constructors contain code /7 Constructors O ¢
AP) ublic BankAccoun
to initialize instance fields P07 body < filled in later

of object
Some methods do not
return a value

Other methods return a /7 Methods st doubL o 1
public void deposit(double amoun!

result (getBalance) // body - filled in later

e Use a return statement

public BankAccount(double initialBalance) {
/7 body - filled in later

}

to exit a method public void withdraw(double amount) {
immediately/return a 7/ body - filled in later
value
public double getBalance() {
// body - filled in later

BankAccount.java

private double balance;

Syntax: return Statement

return expression;
or
return;

Example:
return balance;

Purpose:

To specify the value that a method returns, and exit the
method immediately. The return value becomes the
value of the method call expression.

Constructor Call Example

BankAccount harrysChecking = new BankAccount(1000);

e Create a new object of type BankAccount

e Call the second constructor (since a construction parameter is
supplied)

o Set the parameter variable initialBalance to 1000

o Set the balance instance field of the newly created object to
initialBalance

e Return an object reference, that is, the memory location of the
object, as the value of the new expression

o Store that object reference in the harrysChecking variable

Method Call Example

harrysChecking. deposit(500);

Set the parameter variable amount to 500

e Fetch the balance field of the object whose location
is stored in harrysChecking

e Add the value of amount to balance and store the
result in the variable newBalance

e Store the value of newBalance in the balance instance

field, overwriting the old value

Checkpoint

e How would you implement the translate
method of the Rectangle class?

Testing a Class

e Test class (sometimes called a ‘driver class’)
e Class with a main method that contains code to test
another class
e Typical steps:
e Construct one or more objects of the class that is being
tested
e Invoke one or more methods
e Print out one or more results
e Running test program (typical steps):
e Make a new subfolder for your program
o Make two files, one for each class
e Compile both files
e Run the test program

BankAccountTester.java

27

Summary: Designing and
Implementing Classes

e Find out what an object of the class is supposed to
do

e Specify the public interface

e Document the public interface

e Determine instance fields

e Implement constructors and methods
e Test the class

e Example: Cash Register

CashRegister.java
CashRegisterTester.java

Categories of Variables

e Three categories of variables
e Instance fields (balance in BankAccount)
e Local variables (newBalance in deposit method)
e Parameter variables (amount in deposit method)

e Two important differences
e Lifetime
e Initialization

Variable Lifetimes

e Instance variables belong to object
e Remain ‘alive’ until object is no longer being used

e Java runtime system (virtual machine-JVM)
contains program called garbage collector that
periodically reclaims memory space of unused
objects

e Local and parameter variables belong to a
method
e The ‘die’ when the method is exited

Variable Initialization

e Local variables must be initialized
e Compiler will complain if you don’t

e Parameter variables are initialized with
argument values in the method call

e Instance fields are initialized with default
value (either O or null)

e Common cause of errors: forgetting to initialize
instance variables in a constructor

Implicit Parameters

e The implicit parameter of a method is the object on
which the method is invoked

e The this keyword refers to the object that is
passed as the implicit parameter

e Every method has one implicit parameter
e Using the name of an instance field inside the method
means the instance field of the implicit parameter object
e Can always use the keyword this inside a method to
explicitly refer to the implicit parameter
e Exception: static methods do not have implicit parameter
(Ch.9)

Calling One Constructor from | i
Another

o Also uses the this keyword followed by
parentheses as shorthand

Voting Machines

