
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 4 - Data Types

2

Lecture Outline

 Integer and floating-point numbers
 Limitations of numeric types
 Use of constants
 Arithmetic expressions
 Working with character strings
 User input
 Formatted output

CSC120 — Berry College — Fall 2006

3

Number Types in Java

 Every value (piece of data) is either
 Object reference
 Primitive data type

 Primitive (fundamental) data types
 Six are for numbers – 4 for integers; 2 for f.p.

 Each number type has different range
 Depends on number of bits used to represent

number

4
1 byteThe type with the two truth values false and trueboolean

2 bytesThe character type, representing code units in the
Unicode encoding scheme

char

4 bytesThe single-precision floating-point type, with a
range of about ±1038 and about 7 significant
decimal digits

float

8 bytesThe double-precision floating-point type, with a
range of about ±10308 and about 15 significant
decimal digits

double

SizeDescriptionType

4 bytesThe integer type, with range
–2,147,483,648 . . . 2,147,483,647

int

1 byteThe type describing a single byte, with range
–128 . . . 127

byte

2 bytesThe short integer type, with range
–32768 . . . 32767

short

8 bytesThe long integer type, with range
–9,223,372,036,854,775,808 . . .
–9,223,372,036,854,775,807

long

5

Possible Computation Errors
 Overflow

int n = 1000000;
System.out.println(n * n);

 Use BigInteger class to avoid

 Rounding
double f = 4.35;
System.out.println(100*f);

 Use BigDecimal class to avoid

 To keep code simple, in this class we will just use
primitive types
 For real-world programs, be careful! — e.g. do not use

floating point types for financial computations 6

Converting Between Types
 OK to assign integer value to f.p. variable

int dollars = 100;
double balance = dollars;

 Opposite direction is error:
double balance = 13.75;
int dollars = balance;

 May lose precision

 Use a cast to explicitly convert a value to a different
type

int dollars = (int) balance;
 Tells compiler that you agree to possible information loss

 To round to nearest whole number, use Math.round
long rounded = Math.round(balance);

2

7

Syntax: Cast
(typeName) expression;

Example:
(int) (balance * 100)

Purpose:
To convert an expression to a different type
(may result in information loss with primitive
types)

When does the case (long) x yield a different result
from the call Math.round(x) ? 8

Constants

 Values that do not change
 Often have special significance in a computation

payment = dollars + quarters * 0.25 + dimes * 0.10
 + nickels * 0.05 + pennies * 0.01;

// Clearer version of computation
double quarterValue = 0.25;
double dimeValue = 0.10;
double nickelValue = 0.05;
double pennyValue = 0.01;

payment = dollars + quarters * quarterValue + dimes * dimeValue
 + nickels * nickelValue + pennies * pennyValue;

9

final Variables

// Version of computation using named constants
final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.10;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;

payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

10

Named Constants
 A final variable is a (named) constant

 Once its value has been set, it cannot be changed

 Named constants make programs easier to
read and maintain

 Convention: use all-uppercase names for
constants

11

Class Constants
 If constant values are needed by several

methods, declare them together with the
instance fields of a class and tag them as
static and final

 Give static final constants public access
to enable other code to use them

public class CashRegister {
 ...

 // Constants
 public static final double QUARTER_VALUE = 0.25;
 public static final double DIME_VALUE = 0.10;
 ...
} 12

Syntax: Constant Definition
In a method:

 final typeName varName = expression;

In a class:

 accessSpec static final typeName varName = expression;

Example:
(see previous slides)

Purpose:
To define a named constant in a method or a class

3

13

Enhancing CashRegister

 /**
 Enters the payment received from the customer.
 @param dollars the number of dollars in the payment
 @param quarters the number of quarters in the payment
 @param dimes the number of dimes in the payment
 @param nickels the number of nickels in the payment
 @param pennies the number of pennies in the payment
 */
 public void enterPayment(int dollars, int quarters,
 int dimes, int nickels, int pennies)

CashRegister.java
CashRegisterTester.java

14

Programming Tips: Constants
and Variables

 Do not use ‘magic numbers’
h = 31 * h + ch;

 vs.
final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

 Do use descriptive variable names
payment = d + q * QV + di * DIV + n * NV + p * PV;

 vs.
payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

15

Assignment
 Assignment operator: =

 Does not indicate equality of any type
 Left hand side: variable name
 Right hand side: single value or expression

 items = items + 1;
 Computes value of items + 1
 Places result back into items variable

 items++;
 Increments value of items variable

 items--;
 Decrements value of items variable

16

Assignment Shortcut
Operators

 Can combine arithmetic operators +-/*% with
assignment

balance += amount;
 has same effect as
balance = balance + amount;

 items *= 2; <===> items = items * 2;

17

Arithmetic Operators
 + (addition) - (subtraction) * (multiplication)
 Two kinds of division /

 ‘Normal’ – if at least one of numbers is f.p.
 ‘Integer’ – if both numbers are integers, result is

an integer and remainder is discarded
7.0 / 4 yields 1.75
7 / 4 yields 1

 % (modulo) operator
 Computes the remainder of a division

 7 % 4 yields 3

18

Using the Modulo Operator

 Typical use
int numberPennies = 435;
int dollars = numberPennies / 100;
int cents = numberPennies % 100;

 Try Exercise R4.13

4

19

The Math Class

 Contains a collection of mathematical
methods, like sqrt (square root) and pow
(power)
 See Table 2, page 120, Chapter 4

20

Integer Division: Common
Error

 Solutions:
double total = s1 + s2 + s3;
double average = total / 3;

 or
double average = (s1 + s2 + s3) / 3.0;

int s1 = 5; // Score of test 1
int s2 = 6; // Score of test 2
int s3 = 3; // Score of test 3
double average = (s1 + s2 + s3) / 3; // Error!!!
System.out.println(average);

21

Roundoff Errors
double f = 4.35;
int n = (int) (100 * f);
System.out.println(n); // !!!

 Remedy: try using Math.round method

22

Programming Tips:
Expressions

 Use white space around operators to increase human readability
x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);
x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

 Factor out common code blocks
 More efficient
 Less possibility of typos

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x2 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);

vs.
double root = Math.sqrt(b * b - 4 * a * c);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

23

Using static Methods
 A static method does not operate on an object
 Static methods are defined inside classes

 Called using name of the class
 May have explicit parameters

Math.sqrt(9.0)

 Recall naming conventions
 Class names start with uppercase letter
 Method, object names start with lowercase

24

Strings

 A string is a sequence of characters
 Represented in Java by the String class

 String constants: enclosed in quotation marks
"Hello, World!"

 Length can be computed using length
method

 Empty string "" has length 0

5

25

Concatenation
 Use the + operator to put strings together to

form a longer string

 If one argument of + operator is a string, the
other is also converted to a string

String name = "Dave";
String message = "Hello, " + name;
// message is "Hello, Dave"

String a = "Agent";
int n = 7;
String bond = a + n; // bond is Agent7

26

Concatenation in Print
Statements

 Useful to reduce the number of
System.out.print method calls

System.out.print("The total is ");
System.out.println(total);

System.out.println("The total is " + total);

27

Converting Strings to Numbers
 To convert a String value, like "19", into an int

(integer) value, use
String input = "19";
...
int count = Integer.parseInt(input);

 To convert to floating point, use the
Double.parseDouble method

 If string contains non-numeric characters,
‘exception’ (error) occurs

28

Substrings
 Extract part of string using substring method

String substring(int begin, int pastEnd)

 String position numbers start with 0 (zero)

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello”
String sub2 = greeting.substring(7, 12); // sub is "World"

29

Alternate Version of substring

 Using only one parameter, returns characters
from start position to end of string
String tail = greeting.substring(7);

30

Escape Sequences
 Used to include special characters in a string
 Preceded by \ (backslash) – called the escape

character
 \" - quotation marks
 \' - single quote
 \n - newline
 \\ - backslash

 How would you display these lines of text using a
single string?

He said, "The secret file
is 'c:\secret.txt'."

6

31

char Data Type
 Holds code value for a character
 Every character in the alphabet has a given

numeric value in the Unicode encoding
scheme (Appendix B)

 Use single quotes for character constants
char first = 'H';
char newline = '\n';

32

chars and Strings
 Strings in Java are sequences of Unicode

characters
 charAt method returns the character at a given

position in the string (starting from 0)
String greeting = "Hello, World!";
char ch = greeting.charAt(0); // ch is 'H'

 Unicode system allows representation of
international alphabets (see Advanced Topic 4.5,
Random Fact 4.2)

33

Understanding Data Types
 What’s the difference between the following values

in Java?

 9
 9.0
 "9"
 '9'

34

Understanding Compiler Error
Messages

// Test class full of errors
public class Test {

 public static void main(String[] args) {
 String s = "Hello there";
 char ch = 'abc'; // syntax (compile-time) error
 char p = s.charAt(100);
 String t = s.substring(-4);

 int i = 4 / 0;
 }
}

$ javac Test.java
Test.java:6: unclosed character literal
 char ch = 'abc';
 ^
Test.java:6: unclosed character literal
 char ch = 'abc';
 ^
2 errors

35

// Test class full of errors
public class Test {

 public static void main(String[] args) {
 String s = "Hello there";
 // char ch = 'abc'; // syntax (compile-time) error
 char p = s.charAt(100);
 String t = s.substring(-4);

 int i = 4 / 0;
 }
}

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of
range: 100
 at java.lang.String.charAt(String.java:444)
 at Test.main(Test.java:7)
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of
range: -4
 at java.lang.String.substring(String.java:1438)
 at java.lang.String.substring(String.java:1411)
 at Test.main(Test.java:8)
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Test.main(Test.java:10)

Understand Exceptions

 Look for
 Name/type of exception
 Line number of occurrence

36

Keyboard Input
 System.in – object corresponding to keyboard input

stream
 Very primitive - reads byte at a time

 For more convenient user input, use the Scanner
class (new to Java 5.0)

Scanner in = new Scanner(System.in);
System.out.print("Enter quantity: ");
int quantity = in.nextInt();

‘Input prompt’

7

37

Scanner Methods
 nextInt()
 nextDouble()
 nextWord()

 Returns the next word input as a String object
 End of the word is indicated by whitespace:

space/end of line/tab
 nextLine()

 Returns next entire line of input as a String

38

Input from a Dialog Box
 If not using Scanner (Java version prior to 5.0), easy

way to get user input is create pop-up window
 (Advanced Topic 4.7)

import javax.swing.JOptionPane;

public class Test {
 public static void main(String[] args) {

 String input = JOptionPane.showInputDialog("Enter price:");
 double price = Double.parseDouble(input);
 System.out.println("You entered: " + price);

 System.exit(0);
 }
}

Needed to force program to exit

39

Formatted Output
double total = 3.50;
final double TAX_RATE = 8.5; // Tax rate in percent
double tax = total * TAX_RATE / 100; // tax is 0.2975
System.out.println("Total: " + total);
System.out.println("Tax: " + tax);

Total: 3.5
Tax: 0.2975

Output:

System.out.printf("Total: %5.2f%n", total);
System.out.printf("Tax: %5.2f%n", tax);

Total: 3.50
Tax: 0.30

Output:

40

Using the printf Method

System.out.printf("Total: %5.2f%n", total);

Format string

Format specifiers

Other parameters - values
filled into corresponding
fields of the format string

41

Format Specifiers

%f
Format type

Basic format code:
 d — decimal integer
 x — hexadecimal integer
 o — octal integer
 f — fixed floating-point
 e — exponential f.p.
 g — general f.p.

 (uses shorter of e/f)
 s — string
 n — platform-independent line end

%5.2fFormat code options:

Width - the number of spaces in
which to fit the value (adds
blank spaces if necessary)

Precision - the number of digits
after decimal point

42

Format Flags
 Immediately follow the % character

 – (hyphen) — left justification
 0 (zero) — show leading zeroes (in numbers)
 + (plus) — show plus sign for positive numbers
 (— enclose negative numbers in parentheses
 , (comma) — show decimal separators
 ^ — convert letters to uppercase

8

43

String format Method

 printf is a method of the PrintStream class
 System.out is a PrintStream object

 The String class has a (static) format method
similar to printf
 Returns a string instead of producing output

String message = String.format("Total:%5.2f", total);

 sets message to the value "Total: 3.50"

