Principles of Computer
Science 1

Prof. Nadeem Abdul Hamid

CSC 120 - Fall 2006
Lecture Unit 6 - Decisions

Lecture Outline

e Implementing decisions using if statements
e Grouping statements into blocks

e Comparing numbers, strings, and objects

e Using Boolean operators and variables

CSC120 — Berry College — Fall 2006

Making Decisions

Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)

Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)

e Example: Can’t withdraw more money than in
account balance

“If amount-to-withdraw is less than available balance then
deduct from balance; otherwise charge a penalty to the
balance.”

Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)

e Example: Can’t withdraw more money than in
account balance

“If amount-to-withdraw is less than available balance then
deduct from balance; otherwise charge a penalty to the
balance.”

1f (amount <= balance)
balance = balance - amount;

iflelse Statement

e Does this work?
1f (amount <= balance)
balance = balance - amount;

1f (amount > balance)
balance = balance - OVERDRAFT_PENALTY;

e How about this?
1f (amount <= balance)
balance = balance - amount;

else
balance = balance - OVERDRAFT_PENALTY;

Types of Statements

e Simple
balance = balance - amount;

e Compound
1f (amount <= balance) balance = balance - amount;

e Block

Groups multiple statements together
Can be used anywhere a single statement is used

{

double newBalance = balance - amount;
balance = newBalance;

}

Syntax: if Statement

if (condition) statement

i1f (condition) statementl else statement’

Purpose:
To execute a statement(s) depending on whether a
condition is true or false

Syntax: Block Statement

{

statementl
statement’?

Purpose:
To group several statements together to form a
single statement

Brace Layout

e Doesn’'t matter to compiler — matters to human
e [wo suggested styles — choose one and stick to it

if (amount <= balance)

{
double newBalance = balance - amount;
balance = newBalance;
}
® Or

if (amount <= balance) {
double newBalance = balance - amount;
balance = newBalance;

}

Indentation

Another very critical way to

make programs readable for
humans

Use spaces instead of tab
key
2, 3, or 4 spaces are best
Tips

Always type the beginning and

ending braces first, then fill in
between

Put comment after closing
brace to indicate what it
matches

000
Indentation public class BankAccount {
ﬁublic void withdraw(double amt)
{
Another very critical way to ?‘ (amt <= balance)

make programs readable for | double newBal = balance - amt;

balance = newBal;

humans 1
Use spaces instead of tab %
key

2, 3, or 4 spaces are best
Tips

Always type the beginning and
ending braces first, then fill in
between

Put comment after closing
brace to indicate what it
matches

Indentation

Another very critical way to
make programs readable for
humans

Use spaces instead of tab
key
2, 3, or 4 spaces are best
Tips

Always type the beginning and

ending braces first, then fill in
between

Put comment after closing
brace to indicate what it
matches

public class BankAccount {

ﬁublic void withdraw(double amt)
{

if (amt <= balance)

{

double newBal = balance - amt;
balance = newBal;

}

}

}

public class BankAccount

{

ﬁublic void withdraw(double amt)
{
if (amt <= balance)
{
double newBal = balance - amt;
balance = newBal;
} // end if
} // end withdraw method

} /) éna BankAccount class

Comparing Values

e Relational operators

Java Math Notation Description

> > Greater than

>= > Greater than or equal
< < Less than

<= < Less than or equal
== = Equal

= # Not equal

e == operator denotes equality testing
a=5; // Assign 5 to a

if C a

5) . .

. // Test whether a equals 5

10

Comparing Floating Point

double r = Math.sqgrt(2);
double d = r * r -2;
1if (d=0)

System.out.println("sqrt(2)squared minus 2 is 0”);

else
System.out.println("sqgrt(2)squared minus 2 is not @ but " + d);

11

Comparing Floating Point

double r = Math.sqgrt(2);
double d = r * r -2;
1if (d=0)

System.out.println("sqrt(2)squared minus 2 is 0”7);
else
System.out.println("sqgrt(2)squared minus 2 is not @ but " + d);

sgrt(2)squared minus 2 is not @ but 4.440892098500626E-16

11

Comparing Floating Point

double r = Math.sqgrt(2);
double d = r * r -2;
1if (d=0)

System.out.println("sqrt(2)squared minus 2 is 0”);

else
System.out.println("sqrt(2)squared minus 2 is not @ but " + d);

sgrt(2)squared minus 2 is not @ but 4.440892098500626E-16

e Don’t compare floating point numbers for (exact)
equality ==
Doesn’t work because of roundoff errors

e Instead, check if they are close enough (up to a
desired threshold)

11

Comparing Floating Point '+
(Correctly)

e [est whether (absolute value of) the
difference between two number is close to 0

Threshold often referred to as € — ‘epsilon’
x-y|<¢

e |In Java:

final double EPSILON = 1E-14;

if (Math.abs(x - y) <= EPSILON)
// X 1s approximately equal to y

12

Comparing Strings

e Don't use == for strings either!
if (input == "Y") // WRONG!!!

e Use the equals method
1f (input.equals('Y"))

o == tests identity; equals tests equal contents
Will see this again in ‘Comparing Objects’ slides

e To test equality ignoring upper/lowercase ('Y’ or ‘y’)
1f (input.equalsIgnoreCase("Y")) . . .

13

Comparing Order of Strings

e Use the compareTo method
s.compareTo(t) < @ means s comes before t
s.compareTo(t) > @ means s comes aftert
s.compareTo(t) == @ means s and t are equal

e Java’'s ‘dictionary’ order is according to Unicode
‘car’ comes before ‘cargo’
All uppercase letters come before lowercase
‘Hello’ comes before ‘car’
Numbers come before letters
‘1’ comes before ‘a’

See Appendix B in textbook

14

Comparing Objects

e Like strings, == tests identity; equals tests contents

new Rectangle(5, 10, 20, 30);
box1;
new Rectangle(5, 10, 20, 30);

Rectangle box1
Rectangle boxZ2
Rectangle box3

e boxl != box3 but boxl.equals(box3)
e boxl == boxZ

e Warning: equals method must be defined properly
by the class before you can use it

15

Object References

Rectangle box1
Rectangle box2
Rectangle box3

new Rectangle(5, 10, 20, 30);
box1;
new Rectangle(5, 10, 20, 30);

boxl =

box2 =

box3 =

— A

5
10

16

Testing for null

e Object variable may be set to null
e Indicates ‘no object’

String middleInitial = null; // Not set
if C. . .)
middleInitial = middleName.substring(@, 1);

e Can be used as a condition (use ==):
1f (middleInitial == null)
System.out.println(firstName + " " + lastName);
else
System.out.println(firstName + " " + middlelnitial

+ ", + lastName);

17

Strings and null

e Empty stringis ""
Valid string of length O

e null indicates a string variable does not refer
to anything, not even an empty string

e Always test for null using == not the equals
method

18

Conditions with Side Effects

e Avoid in if statements!
Bad programming practice

e Side effects: assignment, increment, decrement

if((d=b*b_4*a*c)>=®)I"=Math.5qr't(d);

if (Cn-->0) . ..

e Can occasionally be useful to simplify loops
Next chapter

19

000
| X J
o
Multiple Alternatives
e Sequences of comparisons
1f (conditionl) statementl;
else 1f (condition?Z) statementlZ;
else statementN;
e The first matching condition is executed
e Order matters!
1f (richter >= 0) /7 always passes
r = "Generally not felt by people”;
else if (richter >= 3.5) // not tested

r = "Felt by many people, no destruction.

20

if vs. if/lelse

e Consider carefully which one is appropriate to use

1f (richter
= "Most
richter
= "Many
richter
= "Many
richter

—.
—h
-

—.
—h

—.
—h

richter
= "Felt
richter

- —
—+ —+
ATITATSIATSIATSA

>= 8.0)

structures fall”;

>= 7.0)

buildings destroyed";
>= 6.0)

buildings considerably damaged, some collapse";
>= 4.5)

= "Damage to poorly constructed buildings";

>= 3.5)
by many people, no destruction”;
>= 0)

r = "Generally not felt by people";

return r;

21

Nested Branches

e One 1if statement inside another

1f (conditionl) {
1f (conditionlA)
statementlA;
else
statementlB,
} else
statement?Z;

22

000
000
L X
[
Example: Computing Taxes
If your filing status is single If your filing status is married
Tax Bracket Percentage | Tax Bracket Percentage
$0 ... $21,450 15% $0 ... $35,800 15%
Amount over $21,451, |28% Amount over $35,800, | 28%
up to $51,900 up to $86,500
Amount over $51,900 31% Amount over $86,500 | 31%

23

Taxes Flowchart

income
< 21,450

False

income
<51,900

False

True

True

15%
bracket

28%
bracket

31%
bracket

True

Single?

False

income
< 35,800

False

income
< 86,500

False

True

True

15%
bracket

28%
bracket

31%
bracket

24

Tax Program

e Beware ‘Dangling else’: pg 210

25

Preparing Test Cases

e Test cases should achieve complete
coverage of input possibilities

e Tax program
2 filing possibilities
3 tax brackets
= 6 possible combinations

e To test the program, select 6 valid inputs and
at least 1 invalid input (negative income)

26

Selection Operator

condition ? valuel : valuel

e Combines values to yield another value
depending on condition

if construct combines statements

1f (x>0)y =x; elsey = -Xx;
y = X>= 07 x : -X;

27

switch Statement

e Replaces sequence of if/else/else
comparing single integer value against

constant alternatives

int digit;

if (digit == 1)
System.out.print("one");

else 1f (digit == 2)
System.out.print("two");

else if (digit == 3)
System.out.print("three");

else if (digit == 9)
System.out.print("nine");
else
System.out.print("error");

switch (digit) {
case 1: System.out.print("one");
break;
case 2: System.out.print("two");
break;
case 3: System.out.print("three");
break;

case 9: System.out.print("nine");
break;

default: System.out.print("error");
break;

28

switch Statement (cont.)

e Case values must be constants and must be
iIntegers, characters, or enumerated
constants

Cannot be used with floating point, string, or
objects

e Without break statements, execution ‘falls
through’ to the next case until the end

29

The boolean Type

e George Boole (1815-1864). pioneer in the
study of logic

e Value of an expression like amount < 100 is
either true or false

e boolean type: one of these two truth values
Sometimes referred to as 0 and 1

double amount = 0;
boolean b = amount < 1000;
System.out.printlnC b);

30

Boolean Operators

e Used to combine boolean expressions
&& — ‘and’
| | —‘or’ (to type |, use ‘shift’ key + ‘\")
! — ‘not’
Also called logical operators

o 1T (® < amount && amount < 1000) .
Both conditions must be satisfied

e 1f (1nput.equals('S") || input.equals("™M")) .
At least one of the conditions must be satisfied

31

Boolean Operators (cont.)

e 1f (!input.equals("S™)) .
Inverts the condition — if input is not “S”

e [ruth tables

A B A&&B ||A B A||B
True |True |True True |Any |True
True False |False False | True |True
False |Any |False False | False | False

A 1A
True False
False | True

e Expressions can be simplified using rules of
Boolean algebra - e.g. see Topic 6.5 (pg 218)

32

Boolean Operators: se
Lazy/Short-Circuit Evaluation

e && and || operators computed from left to
right; stop evaluation as soon as truth value
can be determined

‘and’: if first condition is false, skips the second
‘or’: if first condition is true, skips the second

1f (input !'= null && Integer.parseInt(input) >0) . . .

33

Predicate Methods

e Methods that return boolean value
public class BankAccount {

public boolean 1isOverdrawn() {
return balance < 0;

h

e Can be used in conditions
1f (harrysChecking.isOverdrawn()) . . .

34

Useful Predicate Methods

e Character class
isDigit
isLetter
1sUpperCase

1sLowerCase
1f (Character.isUpperCaseC ch)) . . .

e Scanner class: hasNextInt, hasNextDouble

1f (in.hasNextInt()) n = in.nextInt();

35

Boolean Variables

private boolean married;

e Can store a truth value, or the outcome of a
condition expression
married = input.equals(C "M");

e Can be used in expressions
1f (married) . . . else .
1f C 'married) .

36

Boolean Variables: ‘Flags’

e Sometimes also called ‘flags’

e Think carefully about names of variables
maritalStatus vs. married

e Don’t write tests like this:
1f (married == true) . . . // Don't
1f (married == false) . . . // Don't

e Use this instead:
1f (married) . . .
1f ('married) . . .

37

Artificial Intelligence

e Serious research: mid-1950s

e Successes?
Chess

Theorem-proving
OCR

e Failures?
Translation
Grammar-checking

e Most ‘Al’ techniques don’t actually imitate human

thinking
e Ethical issues? . ..

38

