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Lecture Outline

e Implementing decisions using if statements
e Grouping statements into blocks

e Comparing numbers, strings, and objects

e Using Boolean operators and variables

CSC120 — Berry College — Fall 2006



Making Decisions




Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)



Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)

e Example: Can’t withdraw more money than in
account balance

“If amount-to-withdraw is less than available balance then
deduct from balance; otherwise charge a penalty to the
balance.”



Making Decisions

e Computer programs often need to make decisions
Take different actions depending on some condition(s)

e Example: Can’t withdraw more money than in
account balance

“If amount-to-withdraw is less than available balance then
deduct from balance; otherwise charge a penalty to the
balance.”

1f ( amount <= balance )
balance = balance - amount;



iflelse Statement

e Does this work?
1f ( amount <= balance )
balance = balance - amount;

1f ( amount > balance )
balance = balance - OVERDRAFT_PENALTY;

e How about this?
1f ( amount <= balance )
balance = balance - amount;

else
balance = balance - OVERDRAFT_PENALTY;




Types of Statements

e Simple
balance = balance - amount;

e Compound
1f ( amount <= balance ) balance = balance - amount;

e Block

Groups multiple statements together
Can be used anywhere a single statement is used

{

double newBalance = balance - amount;
balance = newBalance;

}



Syntax: if Statement

if ( condition ) statement

i1f ( condition ) statementl else statement’

Purpose:
To execute a statement(s) depending on whether a
condition is true or false



Syntax: Block Statement

{

statementl
statement’?

Purpose:
To group several statements together to form a
single statement




Brace Layout

e Doesn’'t matter to compiler — matters to human
e [wo suggested styles — choose one and stick to it

if ( amount <= balance )

{
double newBalance = balance - amount;
balance = newBalance;
}
® Or

if ( amount <= balance ) {
double newBalance = balance - amount;
balance = newBalance;

}



Indentation

Another very critical way to

make programs readable for
humans

Use spaces instead of tab
key
2, 3, or 4 spaces are best
Tips

Always type the beginning and

ending braces first, then fill in
between

Put comment after closing
brace to indicate what it
matches
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Indentation

Another very critical way to
make programs readable for
humans

Use spaces instead of tab
key
2, 3, or 4 spaces are best
Tips

Always type the beginning and

ending braces first, then fill in
between

Put comment after closing
brace to indicate what it
matches

public class BankAccount {

ﬁublic void withdraw( double amt )
{

if ( amt <= balance )

{

double newBal = balance - amt;
balance = newBal;

}

}

}

public class BankAccount

{

ﬁublic void withdraw( double amt )
{
if ( amt <= balance )
{
double newBal = balance - amt;
balance = newBal;
} // end if
} // end withdraw method

} /) éna BankAccount class




Comparing Values

e Relational operators

Java Math Notation Description

> > Greater than

>= > Greater than or equal
< < Less than

<= < Less than or equal
== = Equal

= # Not equal

e == operator denotes equality testing
a=5; // Assign 5 to a

if C a

5) . .

. // Test whether a equals 5
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Comparing Floating Point

double r = Math.sqgrt( 2 );
double d = r * r -2;
1if (d=0)

System.out.println( "sqrt(2)squared minus 2 is 0” );

else
System.out.println( "sqgrt(2)squared minus 2 is not @ but " + d );

11



Comparing Floating Point

double r = Math.sqgrt( 2 );
double d = r * r -2;
1if (d=0)

System.out.println( "sqrt(2)squared minus 2 is 0”7 );
else
System.out.println( "sqgrt(2)squared minus 2 is not @ but " + d );

sgrt(2)squared minus 2 is not @ but 4.440892098500626E-16
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Comparing Floating Point

double r = Math.sqgrt( 2 );
double d = r * r -2;
1if (d=0)

System.out.println( "sqrt(2)squared minus 2 is 0” );

else
System.out.println( "sqrt(2)squared minus 2 is not @ but " + d );

sgrt(2)squared minus 2 is not @ but 4.440892098500626E-16

e Don’t compare floating point numbers for (exact)
equality ==
Doesn’t work because of roundoff errors

e Instead, check if they are close enough (up to a
desired threshold)
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Comparing Floating Point '+
(Correctly)

e [est whether (absolute value of) the
difference between two number is close to 0

Threshold often referred to as € — ‘epsilon’
x-y|<¢

e |In Java:

final double EPSILON = 1E-14;

if ( Math.abs(x - y) <= EPSILON )
// X 1s approximately equal to y
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Comparing Strings

e Don't use == for strings either!
if (input == "Y") // WRONG!!!

e Use the equals method
1f (input.equals('Y"))

o == tests identity; equals tests equal contents
Will see this again in ‘Comparing Objects’ slides

e To test equality ignoring upper/lowercase ('Y’ or ‘y’)
1f (input.equalsIgnoreCase("Y")) . . .
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Comparing Order of Strings

e Use the compareTo method
s.compareTo(t) < @ means s comes before t
s.compareTo(t) > @ means s comes aftert
s.compareTo(t) == @ means s and t are equal

e Java’'s ‘dictionary’ order is according to Unicode
‘car’ comes before ‘cargo’
All uppercase letters come before lowercase
‘Hello’ comes before ‘car’
Numbers come before letters
‘1’ comes before ‘a’

See Appendix B in textbook
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Comparing Objects

e Like strings, == tests identity; equals tests contents

new Rectangle(5, 10, 20, 30);
box1;
new Rectangle(5, 10, 20, 30);

Rectangle box1
Rectangle boxZ2
Rectangle box3

e boxl != box3 but boxl.equals( box3 )
e boxl == boxZ

e Warning: equals method must be defined properly
by the class before you can use it
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Object References

Rectangle box1
Rectangle box2
Rectangle box3

new Rectangle(5, 10, 20, 30);
box1;
new Rectangle(5, 10, 20, 30);

boxl =

box2 =

box3 =

— A

5
10
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Testing for null

e Object variable may be set to null
e Indicates ‘no object’

String middleInitial = null; // Not set
if C. . . )
middleInitial = middleName.substring(@, 1);

e Can be used as a condition (use ==):
1f (middleInitial == null)
System.out.println(firstName + " " + lastName);
else
System.out.println(firstName + " " + middlelnitial

+ ", + lastName);
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Strings and null

e Empty stringis ""
Valid string of length O

e null indicates a string variable does not refer
to anything, not even an empty string

e Always test for null using == not the equals
method
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Conditions with Side Effects

e Avoid in if statements!
Bad programming practice

e Side effects: assignment, increment, decrement

if((d=b*b_4*a*c)>=®)I"=Math.5qr't(d);

if (Cn-->0) . ..

e Can occasionally be useful to simplify loops
Next chapter
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o
Multiple Alternatives
e Sequences of comparisons
1f ( conditionl ) statementl;
else 1f ( condition?Z ) statementlZ;
else statementN;
e The first matching condition is executed
e Order matters!
1f ( richter >= 0 ) /7 always passes
r = "Generally not felt by people”;
else if ( richter >= 3.5 ) // not tested

r = "Felt by many people, no destruction.
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if vs. if/lelse

e Consider carefully which one is appropriate to use

1f ( richter
= "Most
richter
= "Many
richter
= "Many
richter

—.
—h
-

—.
—h

—.
—h

richter
= "Felt
richter

- —
—+ —+
ATITATSIATSIATSA

>= 8.0 )

structures fall”;

>= 7.0 )

buildings destroyed";
>= 6.0 )

buildings considerably damaged, some collapse";
>= 4.5 )

= "Damage to poorly constructed buildings";

>= 3.5 )
by many people, no destruction”;
>= 0 )

r = "Generally not felt by people";

return r;
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Nested Branches

e One 1if statement inside another

1f ( conditionl ) {
1f ( conditionlA )
statementlA;
else
statementlB,
} else
statement?Z;
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Example: Computing Taxes
If your filing status is single If your filing status is married
Tax Bracket Percentage | Tax Bracket Percentage
$0 ... $21,450 15% $0 ... $35,800 15%
Amount over $21,451, |28% Amount over $35,800, | 28%
up to $51,900 up to $86,500
Amount over $51,900 31% Amount over $86,500 | 31%
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Taxes Flowchart

income
< 21,450

False

income
<51,900

False

True

True

15%
bracket

28%
bracket

31%
bracket

True

Single?

False

income
< 35,800

False

income
< 86,500

False

True

True

15%
bracket

28%
bracket

31%
bracket
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Tax Program

e Beware ‘Dangling else’: pg 210
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Preparing Test Cases

e Test cases should achieve complete
coverage of input possibilities

e Tax program
2 filing possibilities
3 tax brackets
= 6 possible combinations

e To test the program, select 6 valid inputs and
at least 1 invalid input (negative income)
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Selection Operator

condition ? valuel : valuel

e Combines values to yield another value
depending on condition

if construct combines statements

1f (x>0 )y =x; elsey = -Xx;
y = X>= 07 x : -X;

27



switch Statement

e Replaces sequence of if/else/else
comparing single integer value against

constant alternatives

int digit;

if ( digit == 1 )
System.out.print( "one" );

else 1f ( digit == 2 )
System.out.print( "two" );

else if ( digit == 3 )
System.out.print( "three" );

else if ( digit == 9 )
System.out.print( "nine" );
else
System.out.print( "error" );

switch ( digit ) {
case 1: System.out.print( "one" );
break;
case 2: System.out.print( "two" );
break;
case 3: System.out.print( "three" );
break;

case 9: System.out.print( "nine" );
break;

default: System.out.print( "error" );
break;
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switch Statement (cont.)

e Case values must be constants and must be
iIntegers, characters, or enumerated
constants

Cannot be used with floating point, string, or
objects

e Without break statements, execution ‘falls
through’ to the next case until the end
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The boolean Type

e George Boole (1815-1864). pioneer in the
study of logic

e Value of an expression like amount < 100 is
either true or false

e boolean type: one of these two truth values
Sometimes referred to as 0 and 1

double amount = 0;
boolean b = amount < 1000;
System.out.printlnC b );
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Boolean Operators

e Used to combine boolean expressions
&& — ‘and’
| | —‘or’ (to type |, use ‘shift’ key + ‘\")
! — ‘not’
Also called logical operators

o 1T ( ® < amount && amount < 1000 ) .
Both conditions must be satisfied

e 1f ( 1nput.equals('S") || input.equals("™M") ) .
At least one of the conditions must be satisfied
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Boolean Operators (cont.)

e 1f ( !input.equals("S™) ) .
Inverts the condition — if input is not “S”

e [ruth tables

A B A&&B ||A B A||B
True |True |True True |Any |True
True False |False False | True |True
False |Any |False False | False | False

A 1A
True False
False | True

e Expressions can be simplified using rules of
Boolean algebra - e.g. see Topic 6.5 (pg 218)
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Boolean Operators: se
Lazy/Short-Circuit Evaluation

e && and || operators computed from left to
right; stop evaluation as soon as truth value
can be determined

‘and’: if first condition is false, skips the second
‘or’: if first condition is true, skips the second

1f ( input !'= null && Integer.parseInt( input ) >0 ) . . .
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Predicate Methods

e Methods that return boolean value
public class BankAccount {

public boolean 1isOverdrawn() {
return balance < 0;

h

e Can be used in conditions
1f ( harrysChecking.isOverdrawn() ) . . .
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Useful Predicate Methods

e Character class
isDigit
isLetter
1sUpperCase

1sLowerCase
1f ( Character.isUpperCaseC ch ) ) . . .

e Scanner class: hasNextInt, hasNextDouble

1f (in.hasNextInt()) n = in.nextInt();
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Boolean Variables

private boolean married;

e Can store a truth value, or the outcome of a
condition expression
married = input.equals(C "M" );

e Can be used in expressions
1f ( married ) . . . else .
1f C 'married ) .
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Boolean Variables: ‘Flags’

e Sometimes also called ‘flags’

e Think carefully about names of variables
maritalStatus vs. married

e Don’t write tests like this:
1f ( married == true ) . . . // Don't
1f ( married == false ) . . . // Don't

e Use this instead:
1f ( married ) . . .
1f ( 'married ) . . .
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Artificial Intelligence

e Serious research: mid-1950s

e Successes?
Chess

Theorem-proving
OCR

e Failures?
Translation
Grammar-checking

e Most ‘Al’ techniques don’t actually imitate human

thinking
e Ethical issues? . ..
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