
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 9 - Designing Classes

2

Lecture Outline

 Choosing and designing classes
 UML

 Understanding side effects
 Pre- and postconditions
 Static methods and fields
 Scope rules
 Organizing classes using packages
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Choosing Classes
 Class represents a single concept/abstraction from

the problem domain
 Name for the class should be a noun

 Concepts from mathematics
 Point
 Rectangle
 Eclipse

 Abstractions of real-life entities
 BankAccount
 CashRegister

4

Choosing Classes (cont.)
 Actor classes (names end in -er, -or)

 Objects of these classes do some sort of work for you
 Scanner
 Random (better name: RandomNumberGenerator)

 Utility classes
 No objects; just contain collection of static methods and

constants
 Math

 Program starters
 Contain only a main method

 Actions are not classes: e.g. ComputePaycheck
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Cohesion
 Criteria for analyzing quality of a public interface:

cohesion and coupling

 A class should represent a single concept
 Cohesive: all its features relate to the concept that the class

represents
 Non-cohesive example (split into two classes):

public class CashRegister {
   public void enterPayment(int dollars, int quarters, int dimes,
                            int nickels, int pennies)
   . . .
   public static final double NICKEL_VALUE = 0.05;
   public static final double DIME_VALUE = 0.1;
   public static final double QUARTER_VALUE = 0.25;
   . . .
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Coupling
 A class depends on another if it uses objects of that

class
 CashRegister depends on Coin (not vice versa)

 Coupling: the amount of dependence classes have
on each other
 Many classes of a program depend on each other: high

coupling
 Few dependencies between classes: low coupling

 Which is better, high or low?
 Hint: think about effect of interface changes
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UML Diagrams

 ‘Unified Modeling Language’
 Notation for object-oriented analysis and design

 Class diagrams denote dependencies by
dashed line with arrow pointing to class that
is depended on
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Consistency
 Another useful criterion for good design
 Follow consistent scheme for class/method

names and parameters

 Java standard library contains many
inconsistencies
 JOptionPane.showInputDialog( prompt )
 JOptionPane.showMessageDialog( null, message )
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Accessor/Mutator Methods

 Accessor: does not change the state of the
implicit parameter

double balance = account.getBalance();

 Mutator: modifies the object on which it is
invoked

account.deposit(1000);
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Immutable Classes
 Contains only accessor methods, no mutator

methods
 Example: String

String name = "John Q. Public";
String uppercased = name.toUpperCase();
                // name is not changed

 Advantage of immutable classes
 Safe to give out copies of references to objects –

object cannot be modified unexpectedly
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Side Effects
 Side effect: any externally observable

modification of data
 Mutator method modifies implicit parameter object
 Another kind of side effect:

public void transfer(double amount, BankAccount other) {
   balance = balance - amount;
   other.balance = other.balance + amount;
       // Modifies explicit parameter
}
 Updating explicit parameter can be surprising – best to

avoid
 Another kind of side effect: output
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Output Side Effects
public void printBalance() { // Not recommended
   System.out.println( "The balance is now $" + balance );
}

 Problems:
 Message in English
 Depends on System.out

 Best to decouple input/output from actual work of
classes

 In general, try to minimize side effects beyond
modification of implicit parameter
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Common Error: Trying to Modify
Primitive Type Parameter

 Scenario (doesn’t work):
double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
. . .
void transfer(double amount, double otherBalance) {
   balance = balance - amount;
   otherBalance = otherBalance + amount;
}
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Modifying Primitive Type
Parameter has no Effect on Caller
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Call-by-Value Example
harrysChecking.transfer(500, savingsAccount);
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Call-by-Value / Call-by-Reference
 Call by value: Method parameters are copied into

the parameter variables when a method starts
 Call by reference: Methods can modify parameters
 Java has call by value for both primitive types and

object references
 A method can change state of object reference

parameters, but cannot replace an object reference with
another

public class BankAccount {
   . . .
   public void transfer(double amount, BankAccount otherAccount) {
      balance = balance - amount;
      double newBalance = otherAccount.balance + amount;
      otherAccount = new BankAccount(newBalance); // Won't work
   }
}
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Preconditions
 Precondition: Requirement that the caller of a

method must meet
 If precondition is violated, method is not responsible for

computing correct result
 Good idea to document preconditions so that callers

don’t pass bad parameters
 Typical uses of preconditions

 To restrict/constrain parameters of a method
 To require that method is only called when object is in an

appropriate state
/**
   Deposits money into this account.
   @param amount the amount of money to deposit
   (Precondition: amount >= 0)
*/
public void deposit( double amount ) { . . . 18

Checking Preconditions

 Method may skip check of the precondition
(puts full trust/responsibility on caller)
 Efficient, but dangerous if there is a violation

 May throw an exception (Ch. 15)
 Inefficient - has to check every time

 May use an assertion check
 Causes error if the assertion fails
 After testing, can disable all assertion checks to

allow program to run at full speed
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Assertions
 Syntax: assert condition;
 Logical condition in a program that you believe

should be true
public void deposit( double amount ) {
   assert amount >= 0;
   balance = balance + amount;
}

 By default, assertion checking is disabled when
running Java programs

 To enable assertion checking:
 java -enableassertions MyProgramName

 Can use -ea as shortcut instead of -enableassertions
20

Bad Way to Handle Violations

 Doesn’t abort the program if precondition is
violated

 But hard to debug if something is going
wrong – nothing to tell you cause of the
problem

public void deposit( double amount ) {
   if ( amount < 0 ) return;
   balance = balance + amount;
}
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Postconditions

 Condition that is true after a method is
completed
 If method is called according to its preconditions,

then is must ensure that its postconditions hold
 Two kinds of postconditions

 Return value is computed correctly
 Object is in a certain state after method call is

completed
/**
   Deposits money into this account.
   (Postcondition: getBalance() >= 0)
   @param amount the amount of money to deposit
   (Precondition: amount >= 0)
*/ 22

Pre- and Postconditions
 Don’t document trivial postconditions that repeat the

@return clause
/** . . .
   @return the account balance
   (Postcondition: the return value equals the account balance
   . . .

 State conditions in terms of public interface, not
private fields

amount <= getBalance()
// not account <= balance

 Pre- and postconditions spell out a contract between
pieces of code
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Class Invariants
 Statement about an object that is true after every

constructor and is preserved by every mutator
(provide preconditions are met)

/**
   A bank account has a balance that can be
   changed by deposits and withdrawals
   (Invariant: getBalance() >= 0)
*/
public class BankAccount {  . . .

 Once you formulate a class invariant, check that the
methods preserve it
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Static Methods
 In Java, every method must be defined within a

class
 Most methods operate on a particular instance of an object

of that class (the ‘implicit parameter’)
 Some methods are not invoked (called) on an object

 Example: Math.sqrt( x )
 Why?

 Method does some computation that only needs numbers –
numbers aren’t objects, so can’t call methods on them:
x.sqrt() is not legal in Java ( x is a double )
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Static Methods (cont.)

 To call a static method, use class name, not an object
double tax = Financial.percentOf( taxRate, total );

 main method is static because there are no objects
when program first starts

 Note: origin of term ‘static’ is historical; better name would be
class methods

public class Financial {
   /** Computes a percentage of an amount.
       @param p the percentage to apply
       @param a the amount to which the percentage is applied
       @return p percent of a
   */
   public static double percentOf(double p, double a) {
      return (p / 100) * a;
   }
   // More financial methods can be added here . . .
} 
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Static Fields
 A static field belongs to the class, not to any single

object of the class
 Also called a ‘class field’
 Static field is shared by all instances of the same class

public class BankAccount {
   . . .
   private double balance;
   private int accountNumber;
   private static int lastAssignedNumber = 1000;
}
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Initializing Static Fields

 Three ways
 Do nothing – will be initialized to default values (0

for numbers, false for boolean, null for objects)
 Use an explicit initializer

private static int lastAssignedNumber = 1000;

 Use a static initialization block
 Less common - Advanced topic 9.3
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Static Field Access
 Static fields should always be private
 Exception: Static constants, may be public

to allow other classes to access them

 Minimize the use of static fields (except static
final fields - constants)

public class BankAccount {
   . . .
   public static final double OVERDRAFT_FEE = 5.0;
}
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Scope of Variables
 The scope of a variable: region of a program in

which the variable can be accessed

 Local variable scope extends from point of
declaration to end of enclosing block

 Scope of a local variable cannot contain definition of
another variable with the same name

 Can have local variables with identical names if
scopes do not overlap
 Example: same variable name can be used in different

methods - refers to different variables
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Scope of Class Members
 Members: fields and methods collectively

 Private members have class scope: can be
accessed anywhere within the class

 Public members accessible by any code
 From outside the class, must use qualified name

 Math.sqrt    or   other.balance
 Within the class, do not need to qualify field and

method names
 Refer automatically to this – the implicit parameter
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Overlapping Scope

 Local variables
shadow fields
(instance variables)
with the same name

 Shadowed fields can
still be accessed by
qualifying them
explicitly with the this
reference

public class Coin {
   . . .
   public Coin( double value, String name ) {
      this.value = value;
      this.name = name;
   }
   
   public double getExchangeValue( double exchRate ) {
      double value;   // local variable
      . . .
      return value;
   }
   . . .
   private String name;
   private double value;
}
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Organizing Classes
 Large Java programs consist of many classes (10+,

100+, …)
 Problem: having all those files just in one directory

 Package: set of related Java classes
 Structuring mechanism to organize files/classes

 All classes in a given package have line at the top of
the file:

package packageName;

 Package names consist of one or more identifiers
separated by periods
 com.horstmann.bigjava
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Package Structure

 Java package and
class names
correspond to
directory (folder)
and file names
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Some Standard Library Packages

IntHolderCommon Object Request Broker
Architecture

omg.org.CORBA
JButtonSwing user interfacejava.swing
ResultSetDatabase Accessjava.sql
SocketNetworkingjava.net
AppletAppletsjava.applet
ColorAbstract Windowing Toolkitjava.awt
PrintScreenInput and Outputjava.io
RandomUtilitiesjava.util
MathLanguage Supportjava.lang

Sample
Class

PurposePackage
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Importing Packages
 Can always use classes without ‘importing’ their

package – just use fully qualified name
java.util.Scanner in = new java.util.Scanner(System.in);

 But, gets tedious using qualified names
 Importing the package allows you to just use the

class name
import java.util.Scanner;
. . .
Scanner in = new Scanner(System.in);

 Shortcut to import all classes in a package:
import java.util.*;

 Don’t need to import java.lang or other classes in
the same package


