
1

1

Principles of Computer
Science I

Prof. Nadeem Abdul Hamid
CSC 120 – Fall 2006

Lecture Unit 9 - Designing Classes

2

Lecture Outline

 Choosing and designing classes
 UML

 Understanding side effects
 Pre- and postconditions
 Static methods and fields
 Scope rules
 Organizing classes using packages

CSC120 — Berry College — Fall 2006

3

Choosing Classes
 Class represents a single concept/abstraction from

the problem domain
 Name for the class should be a noun

 Concepts from mathematics
 Point
 Rectangle
 Eclipse

 Abstractions of real-life entities
 BankAccount
 CashRegister

4

Choosing Classes (cont.)
 Actor classes (names end in -er, -or)

 Objects of these classes do some sort of work for you
 Scanner
 Random (better name: RandomNumberGenerator)

 Utility classes
 No objects; just contain collection of static methods and

constants
 Math

 Program starters
 Contain only a main method

 Actions are not classes: e.g. ComputePaycheck

5

Cohesion
 Criteria for analyzing quality of a public interface:

cohesion and coupling

 A class should represent a single concept
 Cohesive: all its features relate to the concept that the class

represents
 Non-cohesive example (split into two classes):

public class CashRegister {
 public void enterPayment(int dollars, int quarters, int dimes,
 int nickels, int pennies)
 . . .
 public static final double NICKEL_VALUE = 0.05;
 public static final double DIME_VALUE = 0.1;
 public static final double QUARTER_VALUE = 0.25;
 . . .

6

Coupling
 A class depends on another if it uses objects of that

class
 CashRegister depends on Coin (not vice versa)

 Coupling: the amount of dependence classes have
on each other
 Many classes of a program depend on each other: high

coupling
 Few dependencies between classes: low coupling

 Which is better, high or low?
 Hint: think about effect of interface changes

2

7

UML Diagrams

 ‘Unified Modeling Language’
 Notation for object-oriented analysis and design

 Class diagrams denote dependencies by
dashed line with arrow pointing to class that
is depended on

8

Consistency
 Another useful criterion for good design
 Follow consistent scheme for class/method

names and parameters

 Java standard library contains many
inconsistencies
 JOptionPane.showInputDialog(prompt)
 JOptionPane.showMessageDialog(null, message)

9

Accessor/Mutator Methods

 Accessor: does not change the state of the
implicit parameter

double balance = account.getBalance();

 Mutator: modifies the object on which it is
invoked

account.deposit(1000);

10

Immutable Classes
 Contains only accessor methods, no mutator

methods
 Example: String

String name = "John Q. Public";
String uppercased = name.toUpperCase();
 // name is not changed

 Advantage of immutable classes
 Safe to give out copies of references to objects –

object cannot be modified unexpectedly

11

Side Effects
 Side effect: any externally observable

modification of data
 Mutator method modifies implicit parameter object
 Another kind of side effect:

public void transfer(double amount, BankAccount other) {
 balance = balance - amount;
 other.balance = other.balance + amount;
 // Modifies explicit parameter
}
 Updating explicit parameter can be surprising – best to

avoid
 Another kind of side effect: output

12

Output Side Effects
public void printBalance() { // Not recommended
 System.out.println("The balance is now $" + balance);
}

 Problems:
 Message in English
 Depends on System.out

 Best to decouple input/output from actual work of
classes

 In general, try to minimize side effects beyond
modification of implicit parameter

3

13

Common Error: Trying to Modify
Primitive Type Parameter

 Scenario (doesn’t work):
double savingsBalance = 1000;
harrysChecking.transfer(500, savingsBalance);
System.out.println(savingsBalance);
. . .
void transfer(double amount, double otherBalance) {
 balance = balance - amount;
 otherBalance = otherBalance + amount;
}

14

Modifying Primitive Type
Parameter has no Effect on Caller

15

Call-by-Value Example
harrysChecking.transfer(500, savingsAccount);

16

Call-by-Value / Call-by-Reference
 Call by value: Method parameters are copied into

the parameter variables when a method starts
 Call by reference: Methods can modify parameters
 Java has call by value for both primitive types and

object references
 A method can change state of object reference

parameters, but cannot replace an object reference with
another

public class BankAccount {
 . . .
 public void transfer(double amount, BankAccount otherAccount) {
 balance = balance - amount;
 double newBalance = otherAccount.balance + amount;
 otherAccount = new BankAccount(newBalance); // Won't work
 }
}

17

Preconditions
 Precondition: Requirement that the caller of a

method must meet
 If precondition is violated, method is not responsible for

computing correct result
 Good idea to document preconditions so that callers

don’t pass bad parameters
 Typical uses of preconditions

 To restrict/constrain parameters of a method
 To require that method is only called when object is in an

appropriate state
/**
 Deposits money into this account.
 @param amount the amount of money to deposit
 (Precondition: amount >= 0)
*/
public void deposit(double amount) { . . . 18

Checking Preconditions

 Method may skip check of the precondition
(puts full trust/responsibility on caller)
 Efficient, but dangerous if there is a violation

 May throw an exception (Ch. 15)
 Inefficient - has to check every time

 May use an assertion check
 Causes error if the assertion fails
 After testing, can disable all assertion checks to

allow program to run at full speed

4

19

Assertions
 Syntax: assert condition;
 Logical condition in a program that you believe

should be true
public void deposit(double amount) {
 assert amount >= 0;
 balance = balance + amount;
}

 By default, assertion checking is disabled when
running Java programs

 To enable assertion checking:
 java -enableassertions MyProgramName

 Can use -ea as shortcut instead of -enableassertions
20

Bad Way to Handle Violations

 Doesn’t abort the program if precondition is
violated

 But hard to debug if something is going
wrong – nothing to tell you cause of the
problem

public void deposit(double amount) {
 if (amount < 0) return;
 balance = balance + amount;
}

21

Postconditions

 Condition that is true after a method is
completed
 If method is called according to its preconditions,

then is must ensure that its postconditions hold
 Two kinds of postconditions

 Return value is computed correctly
 Object is in a certain state after method call is

completed
/**
 Deposits money into this account.
 (Postcondition: getBalance() >= 0)
 @param amount the amount of money to deposit
 (Precondition: amount >= 0)
*/ 22

Pre- and Postconditions
 Don’t document trivial postconditions that repeat the

@return clause
/** . . .
 @return the account balance
 (Postcondition: the return value equals the account balance
 . . .

 State conditions in terms of public interface, not
private fields

amount <= getBalance()
// not account <= balance

 Pre- and postconditions spell out a contract between
pieces of code

23

Class Invariants
 Statement about an object that is true after every

constructor and is preserved by every mutator
(provide preconditions are met)

/**
 A bank account has a balance that can be
 changed by deposits and withdrawals
 (Invariant: getBalance() >= 0)
*/
public class BankAccount { . . .

 Once you formulate a class invariant, check that the
methods preserve it

24

Static Methods
 In Java, every method must be defined within a

class
 Most methods operate on a particular instance of an object

of that class (the ‘implicit parameter’)
 Some methods are not invoked (called) on an object

 Example: Math.sqrt(x)
 Why?

 Method does some computation that only needs numbers –
numbers aren’t objects, so can’t call methods on them:
x.sqrt() is not legal in Java (x is a double)

5

25

Static Methods (cont.)

 To call a static method, use class name, not an object
double tax = Financial.percentOf(taxRate, total);

 main method is static because there are no objects
when program first starts

 Note: origin of term ‘static’ is historical; better name would be
class methods

public class Financial {
 /** Computes a percentage of an amount.
 @param p the percentage to apply
 @param a the amount to which the percentage is applied
 @return p percent of a
 */
 public static double percentOf(double p, double a) {
 return (p / 100) * a;
 }
 // More financial methods can be added here . . .
}

26

Static Fields
 A static field belongs to the class, not to any single

object of the class
 Also called a ‘class field’
 Static field is shared by all instances of the same class

public class BankAccount {
 . . .
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;
}

27

Initializing Static Fields

 Three ways
 Do nothing – will be initialized to default values (0

for numbers, false for boolean, null for objects)
 Use an explicit initializer

private static int lastAssignedNumber = 1000;

 Use a static initialization block
 Less common - Advanced topic 9.3

28

Static Field Access
 Static fields should always be private
 Exception: Static constants, may be public

to allow other classes to access them

 Minimize the use of static fields (except static
final fields - constants)

public class BankAccount {
 . . .
 public static final double OVERDRAFT_FEE = 5.0;
}

29

Scope of Variables
 The scope of a variable: region of a program in

which the variable can be accessed

 Local variable scope extends from point of
declaration to end of enclosing block

 Scope of a local variable cannot contain definition of
another variable with the same name

 Can have local variables with identical names if
scopes do not overlap
 Example: same variable name can be used in different

methods - refers to different variables

30

Scope of Class Members
 Members: fields and methods collectively

 Private members have class scope: can be
accessed anywhere within the class

 Public members accessible by any code
 From outside the class, must use qualified name

 Math.sqrt or other.balance
 Within the class, do not need to qualify field and

method names
 Refer automatically to this – the implicit parameter

6

31

Overlapping Scope

 Local variables
shadow fields
(instance variables)
with the same name

 Shadowed fields can
still be accessed by
qualifying them
explicitly with the this
reference

public class Coin {
 . . .
 public Coin(double value, String name) {
 this.value = value;
 this.name = name;
 }

 public double getExchangeValue(double exchRate) {
 double value; // local variable
 . . .
 return value;
 }
 . . .
 private String name;
 private double value;
}

32

Organizing Classes
 Large Java programs consist of many classes (10+,

100+, …)
 Problem: having all those files just in one directory

 Package: set of related Java classes
 Structuring mechanism to organize files/classes

 All classes in a given package have line at the top of
the file:

package packageName;

 Package names consist of one or more identifiers
separated by periods
 com.horstmann.bigjava

33

Package Structure

 Java package and
class names
correspond to
directory (folder)
and file names

34

Some Standard Library Packages

IntHolderCommon Object Request Broker
Architecture

omg.org.CORBA
JButtonSwing user interfacejava.swing
ResultSetDatabase Accessjava.sql
SocketNetworkingjava.net
AppletAppletsjava.applet
ColorAbstract Windowing Toolkitjava.awt
PrintScreenInput and Outputjava.io
RandomUtilitiesjava.util
MathLanguage Supportjava.lang

Sample
Class

PurposePackage

35

Importing Packages
 Can always use classes without ‘importing’ their

package – just use fully qualified name
java.util.Scanner in = new java.util.Scanner(System.in);

 But, gets tedious using qualified names
 Importing the package allows you to just use the

class name
import java.util.Scanner;
. . .
Scanner in = new Scanner(System.in);

 Shortcut to import all classes in a package:
import java.util.*;

 Don’t need to import java.lang or other classes in
the same package

