CSC 120(A) - Principles of Computer Science I
Prof. Nadeem Abdul Hamid
Fall 2004

Lecture Handout: Binary Numbers

1. Converting base-2 numbers to base-10

To figure out the value of a base-2 number, just take the sum of all the digits times their place values.
For example:

```
place values 8s 4s 2s 1s
    01 1 0 = 0x8 + 1x4 + 1x2 + 1x0 = 4 + 2 = 6 60
```


2. Converting base- 10 numbers to base-2

Follow this algorithm:
let our input be \mathbf{n}, a base-10 number
our output will be a base- 2 number, which initially has no digits
while (n is not zero) do the following divide n by 2
let the remainder be the new left-most digit of the output
set n to the quotient of the division
loop to the beginning of the while block
Example: Convert 14_{10} to binary

The answer is 1110_{2}. (Try converting it back to base- 10 to check.)

3. Binary addition...

... is just like decimal addition. Do the addition column by column and carry over if necessary.
Examples:
$\left.\begin{array}{rrrr|rrrrrr}1 & 0 & 0 & 1 & 9 & \mid & 1 & 0 & 1 & 1\end{array}\right)$

Note: The computer stores the data in a fixed number of bits, so in these examples, it would discard the overflow 1 s in both examples.

4. Negative numbers

Using 4 bits we have 16 possible combinations:

0000	1000
0001	1001
0010	1010
0011	1011
0100	1100
0101	1101
0110	1110
0111	1111

One possible way to represent negative numbers is to use the left-most bit as a sign bit, where $0="+$ " and $1="->$. One problem with this approach is that there are two representations of zero: 0000 and $1000(+0$ and -0$)$.

An alternative representation (and one that is used by the computer) is called Two's complement representation. The number line below shows which binary numbers are used to represent numbers in the range of -8 to +7 .

```
-8
-- |---- |---- |---- |----- |---- |---- |----- |----- |----- |----- |---- |----- |-----------------
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111
```

With this representation, addition and subtraction (addition of negative numbers) work very conveniently:

Notice the overflow 1 in the second example is just discarded. Notice also, the leftmost bit of negative numbers is always 1.

5. Computing the negative of a two's complement number

Just invert the bits (replace 0 s with 1 s and vice versa) and add 1.
Example:

$$
\begin{aligned}
& 5_{10}=0101 \\
& -5_{10}=\begin{array}{llll}
1 & 0 & 1 & 0 \\
& + & & 1
\end{array} \\
& \text {--------- } \\
& 1011
\end{aligned}
$$

6. Overflow

Sometimes overflow works just fine, like when adding positive and negative numbers. However, overflow can often be a problem when working with a computer and your data gets larger than the fixed number of bits. Thus, if you are not careful,

```
0101 + 0101 = 101 0 (that is, 5 + 5 = -6 !!! )
```

