CSC 120(A) - Principles of Computer Science I Prof. Nadeem Abdul Hamid Fall 2004

Lecture Handout: Binary Numbers

1. Converting base-2 numbers to base-10

To figure out the value of a base-2 number, just take the sum of all the digits times their place values.

For example:

place values 8s 4s 2s 1s **0 1 1 0** = $0x8 + 1x4 + 1x2 + 1x0 = 4 + 2 = 6_{10}$

2. Converting base-10 numbers to base-2

Follow this algorithm:

let our input be **n**, a base-10 number our output will be a base-2 number, which initially has no digits

while (n is not zero) do the following divide n by 2let the remainder be the new left-most digit of the output set n to the quotient of the divisionloop to the beginning of the while block

Example: Convert 14₁₀ to binary

Division	Binary number	output
14/2 = 7 R C)
7/2 = 3 R 1	1 ()
3/2 = 1 R 1	1 1 ()
1/2 = 0 R 1	1 1 1 0)

The answer is 1110₂. (Try converting it back to base-10 to check.)

3. Binary addition...

... is just like decimal addition. Do the addition column by column and carry over if necessary.

Examples:

1 0 0 1	9		1 0 1 1	11
+ 1 1 0 1	+ 13	I	+ 0 1 1 1	+ 7
1 0 1 1 0	22		1 0 0 1 0	18

Note: The computer stores the data in a fixed number of bits, so in these examples, it would discard the overflow 1s in both examples.

4. Negative numbers

Using 4 bits we have 16 possible combinations:

0000	1000
0001	1001
0010	1010
0011	1011
0100	1100
0101	1101
0110	1110
0111	1111

One possible way to represent negative numbers is to use the left-most bit as a sign bit, where 0="+" and 1="-". One problem with this approach is that there are two representations of zero: 0000 and 1000 (+0 and -0).

An alternative representation (and one that is used by the computer) is called <u>**Two's complement representation**</u>. The number line below shows which binary numbers are used to represent numbers in the range of -8 to +7.

With this representation, addition and subtraction (addition of negative numbers) work very conveniently:

1 0 0	0 –	8		0 1 1 0	+ 6
+ 0 1 0	1 +	5	+ 1	1 0 1 1	- 5
			1		

Notice the overflow 1 in the second example is just discarded. Notice also, the leftmost bit of negative numbers is always 1.

5. Computing the negative of a two's complement number

Just invert the bits (replace 0s with 1s and vice versa) and add 1.

Example:

 $5_{10} = 0 1 0 1$ $-5_{10} = 1 0 1 0$ + 11 0 1 1

6. Overflow

Sometimes overflow works just fine, like when adding positive and negative numbers. However, overflow can often be a problem when working with a computer and your data gets larger than the fixed number of bits. Thus, if you are not careful,

0 1 0 1 + 0 1 0 1 = 1 0 1 0 (that is, 5 + 5 = -6 !!!)