Principles of
Computer Science 1

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004 ‘
Lecture Unit 3

Recap: Types of Methods

m Class methods
- Associated with a class instead of object instances
- Defined with the static modifier

m Instance methods
- Methods that operate on the data of an object

m Constructors

- Special methods called automatically when you create a
new object of a class

- Name must be exactly the same as the class
- Do not specify a return type (like void)
m Void methods
m Value-returning methods
m Helper methods
- Declared privately in a class; used internally

CSC 120A - Berry College - Fall 2004

Recap: Java Applications

m A class or classes containing fields and
methods

m Fields: identifier and type
- Can be variables or constants

m Methods: declarations, statements,
expressions, method calls, input, output

= Comments
® One class contains the main method

CSC 120A - Berry College - Fall 2004

Review Chapter 2 Goals

m Understand the distinction between syntax and
semantics
m Why is it important to use meaningful identifiers in
programming
m Understand similarities and differences
- built-in (primitive) types and objects
- - char and String
- named constant and variable
- assignment of an object and of a primitive type value
- void and value-returning methods
m Understand how a Java application is composed of
a class with one or more methods

_- CSC 120A - Berry College - Fall 2004 4

Quick Quiz

Declare a class called Quiz
Declare a field of type char called ch
Declare a field of type String called str

Define a constructor (method) for the class that
assigns /!’ to ch and “Ok” to str
m Define a void method called printit with no
- parameters
m Declare a local string variable called x in the
method and assign it the concatenation of str and
ch
m Insert a statement in the method to print out x on
the screen

CSC 120A - Berry College - Fall 2004 5

Java Data Types (Complete List)
=
Java data types

primitive reference

/\ array

integral floating point boolean
. \ interface

float double class

byte char short int 1long

_- CSC 120A - Berry College - Fall 2004 6

IR

Primitive vs. Reference Types

char letter = 'J';
String title = "Programming and Problem Solving with Java";
String bookName = title;

Primitive type
Tetter title

Meamory address numbar of the
start of e siring viskie

i o

Location containing Subssquent locations in memary
first part of string

Adver exsciting the assignment: bookName = title;
bookNane

CSC 120A - Berry College - Fall 2004

"l E N

Copying References

m Changing the object through one reference
affects all other references
- Can be useful
- Can be confusing
- Better avoid this for now

CSC 120A - Berry College - Fall 2004

IR

Integer Data Types

byte: 8 bits (less frequently used)
short: 16 bits (less frequently used)
int: 32 bits (most used - up to 9 decimal digits)
long: 64 bits (up to 18 decimal digits)
Literals
-int: 0 2001
- long: OL 18005551212L
m Java does not produce an error message if overflow
occurs

m Caution: Integer literal beginning with zero is
assumed to be octal (base-8): 015 =13,

CSC 120A - Berry College - Fall 2004

Floating-Point Types

-

m Integer part and fractional part
- f£loat: 32 bits
- double: 64 bits (default)

m Examples:
18.0 127.54 0.57 4. 193145.8523

. .8 1.74536E-12 7e20

2.001E3F 0.0f (float literals)

m Many decimal floating-point values can

only be approximated in base-2 system
- Program may print 4.799998 instead of 4.8
_- CSC 120A - Berry College - Fall 2004 10

Scientific Notation

-

2.7E4 means 2.7 x10* =
27000, =
27000.0

|| 2.7B-4 means 2.7x10 %=

0002.7 =
~

0.00027

_- CSC 120A - Berry College - Fall 2004 1"

Declarations for Numeric Types

|
m Can define fields, variables, constants just
as for char and String
m Named constant examples:
final double PI = 3.14159;
final float E = 2.71828F;
final long MAX_TEMP = 1000000000L;
| final int MIN TEMP = -273;
final char LETTER = ‘W’ ;

final String NAME = “Elizabeth”;

m Variables:
int num 2;

27

char ch

_- CSC 120A - Berry College - Fall 2004 12

Why Named Constants?

m Readability
m Ease of modification
m Reliability

CSC 120A - Berry College - Fall 2004 13

Arithmetic Expressions

m Made up of constants, variables, operators,
and parentheses

num + 2 rate - 6.0 4 - alpha

m Arithmetic operators:
- unary plus: +259.65 +alpha
- unary minus: -54 -rate
- addition: a+b
- subtraction: b-a
- multiplication: a *b

division (floating-point or integer): b / a
modulus (remainder): b % a

CSC 120A - Berry College - Fall 2004 14

Division and Modulus

m Integer
7/2=3
7%2=1
3%2=1
3%-2=1
3%2=-1
3%-2=-1
7/0 and 7% 0 = error
m Floating-point
70/2.0=35
72%21=09
7.0/ 0.0 = infinity 7.0 % 0.0 = not a number (NAN)

CSC 120A - Berry College - Fall 2004 15

Assignment Statements

int num;
int alpha = 10;

num = 6;

num = num + alpha;
alpha = alpha % 7;

m Remember: this = in Java is assignment, not
mathematical equality

CSC 120A - Berry College - Fall 2004 16

Increment / Decrement Operators

m++ and --

num++; isthesameas num = num + 1;

mPrefix as well as postfix versions:
num++; ++num;

num = 5; alpha = num++ * 3; // alpha = 15, num = 6
num = 5; alpha = ++num * 3; // alpha = 18, num = 6

CSC 120A - Berry College - Fall 2004 17

Operator Precedence

m Determines which operator is applied first in an
expression having several operators
avgTemp = FREEZE_PT + BOIL PT / 2.0;

m Highest precedence: ()
++ -- (postfix)
++ -- (prefix)
+ - (unary)
* / <
Lowest precedence: + -

m Change order of evaluation using parentheses

CSC 120A - Berry College - Fall 2004 18

Operator Associativity

m InJava: * /% + - are left associative

- in an expression having two operators with the
same priority, the left operator is applied first

m9-5-1 means (9-5)-1=3
m Evaluate:

7 * 10 - 5 % 3 * 4 + 9

CSC 120A - Berry College - Fall 2004 19

Type Conversion

m Integers and floating-point numbers are
represented differently in the computer

m What happens here?
double someDouble = 12; // Java automatically con-
// verts value to 12.0
int someInt = 4.8; // Java compiler gives an error
// “possible loss of precision”

CSC 120A - Berry College - Fall 2004 20

What do we get?

double
double
double

A
B
Cc
double D

N NN w
o N N %
N W w3

2;
1;
1.
+

N+ o+

0;
1;
System.out.println(A);
System.out.println(B);

System.out.println(C);
System.out.println (D) ;

CSC 120A - Berry College - Fall 2004 21

More Conversion

m Widening conversion
- e.g. from int to double (OK)
m Narrowing conversion
- e.g. from double to int (not OK if implicit)

m Type casting

- Tell Java explicitly to convert values

double someDouble = (double) 12;

int someInt = (int) 4.8; // Java accepts this now
System.out.println((double) (7/2));
System.out.println((double) (7) / (double) (2));

CSC 120A - Berry College - Fall 2004 22

Type Casting

m Makes it clear that type mixing is
intentional
- Even if the program would run fine without the
explicit casts
m Often necessary for correct results
int sum, count;
double average;

// compute sum = 60, count = 80
average = sum / count; // average is 0.0

average = (double)sum / count; // this is better
average = (double)sum / (double)count; // or this

CSC 120A - Berry College - Fall 2004 23

String Conversion
m Java automatically converts numbers to
Strings when mixed in an expression with

the + (concatenation) operator

double value = 27.85;
String answer = “The answer is: “ + 27.85;
// answer is now “The answer is: 27.85”

m But be careful...

CSC 120A - Berry College - Fall 2004 24

String Conversion Examples

answer = “Result: ™ + 27 + 18 + ™ and ™ + 9;
// answer is “Result: 2718 and 9”
answer = “Result: “ + 27 + %, ™ + 18 + “ and ™ + 9;

// answer is “Result: 27, 18 and 9”

m Why isn’t the first one: “Result: 45 and 9”?

* Hint: precedence and evaluation order (associativity)

m How about this:
answer = 27 + 18 + 9 + “ are the results.”

m Or these:

answer = 27 + 18 + 9;
answer = “” + 27 + 18 + 9;
answer = “ + (27 + 18 + 9);
_- CSC 120A - Berry College - Fall 2004 25
Useful Methods in the Math class
|

m Table 3.1 (page 122) in textbook
- Math.abs(x)
- Math.cos(x)
Math.sin(x)
Math.log(x) /natural logarithm (base=e)
Math.pow(x,y)
- Math.min(x,y)
Math.max(x,y)
Math.random()
- Math.round(x)
- Math.sqrt(x)
m Use them like this:

double root = Math.sqrt(99);

1

CSC 120A - Berry College - Fall 2004 26

String Methods

m The length() method returns an int value
that is the number of characters in the string

String name = “Alexandra”;
int len = name.length(); // len = 9

m indexOf() searches for a substring and
returns the beginning position in the string
(starting from 0) or -1 if it’s not a substring

String phrase = “The dog and the cat”;
int posA = phrase.indexOf (“the”); // posA =

I
R

int posB = phrase.indexOf (“rat”); // posB = -1

CSC 120A - Berry College - Fall 2004 27

Substrings

m Method substring() returns a substring of a
string, but does not change the string itself

String name = “Programming and Problem Solving”;
name. substring(0,7) ; // “Program”
name.substring(7,15) ; // “ming and”
name.substring(10,10) ; V72
name.substring(24,25) ; // “s”

- First parameter: starting position
- Second parameter: one past the ending position
- Returns: a String value

CSC 120A - Berry College - Fall 2004 28

Using substring Safely

m Bad parameters result in a runtime error:
String name = “Programming and Problem Solving”;
name.substring(10,50) ;

// Error: String index out of range: 50

m Safer method call:
String name = “Programming and Problem Solving”;
int start = 10;
int len = 40;
name.substring(start, Math.min(start+len,
name.length()) ;

CSC 120A - Berry College - Fall 2004 29

String operations

m What does this print out?

String fullname = “Jonathan Alexander Peterson Jr.”;

int start = fullname.indexOf (“Peterson”) ;

String name = “Mr. “ + name.substring(start,
name.length());

CSC 120A - Berry College - Fall 2004 30

Converting Strings to Numbers

-
m The BufferedReader class allows us to get lines of
text (strings) from the keyboard
m To convert input from String type to numeric type,
we must use the appropriate method:
- Primitive type Object type Method
int Integer parselnt
long Long parseLong
float Float parseFloat
double Double parseDouble
_- CSC 120A - Berry College - Fall 2004 31
Getting Number Input
|

BufferedReader in = new BufferedReader (new
InputStreamReader (System.in)) ;
int myNumber;
System.out.println("Enter an integer number: ");
myNumber = Integer.parselnt(in.readLine())
System.out.println (myNumber + " squared is " +
(myNumber*myNumber)) ;

m What if evil user enters something besides a
number?

- Our program crashes with a
NumberFormatException (until Chapter 9)

_- CSC 120A - Berry College - Fall 2004 32

Applications with Multiple Class Files

m Many benefits
- Smaller chunks of stuff to work with at a time
- Reuse in other applications
- Compile/test/debug one at a time
m In Java, name each file exactly the same as the class
defined inside it
. m We only have to make classes public if they are to
be accessed by other entities outside the directory
- like the JVM - needs to get to the main method
m New Name/NameDriver example

- Book uses “import Name;” statement - you don’t (you'll
probably get an error if you try)

_- CSC 120A - Berry College - Fall 2004 33

