
1

Principles of
Computer Science I

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004

Lecture Unit 3

CSC 120A - Berry College - Fall 2004 2

Recap: Types of Methods

Class methods
– Associated with a class instead of object instances
– Defined with the static modifier

Instance methods
– Methods that operate on the data of an object

Constructors
– Special methods called automatically when you create a

new object of a class
– Name must be exactly the same as the class
– Do not specify a return type (like void)

Void methods
Value-returning methods
Helper methods
– Declared privately in a class; used internally

CSC 120A - Berry College - Fall 2004 3

Recap: Java Applications

A class or classes containing fields and
methods
Fields: identifier and type
– Can be variables or constants

Methods: declarations, statements,
expressions, method calls, input, output
Comments
One class contains the main method

2

CSC 120A - Berry College - Fall 2004 4

Review Chapter 2 Goals

Understand the distinction between syntax and
semantics
Why is it important to use meaningful identifiers in
programming
Understand similarities and differences
– built-in (primitive) types and objects
– char and String
– named constant and variable
– assignment of an object and of a primitive type value
– void and value-returning methods

Understand how a Java application is composed of
a class with one or more methods

CSC 120A - Berry College - Fall 2004 5

Quick Quiz

Declare a class called Quiz
Declare a field of type char called ch
Declare a field of type String called str
Define a constructor (method) for the class that
assigns ’!’ to ch and ”Ok” to str
Define a void method called printit with no
parameters
Declare a local string variable called x in the
method and assign it the concatenation of str and
ch
Insert a statement in the method to print out x on
the screen

CSC 120A - Berry College - Fall 2004 6

Java Data Types (Complete List)

Java data types

primitive reference

integral floating point boolean

byte char short int long

float double

array

interface

class

3

CSC 120A - Berry College - Fall 2004 7

Primitive vs. Reference Types
char letter = 'J';
String title = "Programming and Problem Solving with Java";
String bookName = title;

CSC 120A - Berry College - Fall 2004 8

Copying References

Changing the object through one reference
affects all other references
– Can be useful
– Can be confusing
– Better avoid this for now

CSC 120A - Berry College - Fall 2004 9

Integer Data Types

byte: 8 bits (less frequently used)
short: 16 bits (less frequently used)
int: 32 bits (most used – up to 9 decimal digits)
long: 64 bits (up to 18 decimal digits)
Literals
– int: 0 2001
– long: 0L 18005551212L

Java does not produce an error message if overflow
occurs
Caution: Integer literal beginning with zero is
assumed to be octal (base-8): 015 = 1310

4

CSC 120A - Berry College - Fall 2004 10

Floating-Point Types

Integer part and fractional part
– float: 32 bits
– double: 64 bits (default)

Examples:
18.0 127.54 0.57 4. 193145.8523
.8 1.74536E-12 7e20

2.001E3F 0.0f (float literals)
Many decimal floating-point values can
only be approximated in base-2 system
– Program may print 4.799998 instead of 4.8

CSC 120A - Berry College - Fall 2004 11

Scientific Notation

2.7E4 means 2.7 x 10 4 =
2.7000 =
27000.0

2.7E-4 means 2.7 x 10 - 4 =
0002.7 =

0.00027

CSC 120A - Berry College - Fall 2004 12

Declarations for Numeric Types

Can define fields, variables, constants just
as for char and String
Named constant examples:
final double PI = 3.14159;
final float E = 2.71828F;
final long MAX_TEMP = 1000000000L;
final int MIN_TEMP = -273;
final char LETTER = ‘W’;
final String NAME = “Elizabeth”;

Variables:
int num = 2;
char ch = ‘2’;

5

CSC 120A - Berry College - Fall 2004 13

Why Named Constants?

Readability
Ease of modification
Reliability

CSC 120A - Berry College - Fall 2004 14

Arithmetic Expressions

Made up of constants, variables, operators,
and parentheses
num + 2 rate – 6.0 4 - alpha

Arithmetic operators:
– unary plus: +259.65 +alpha
– unary minus: -54 -rate
– addition: a + b
– subtraction: b - a
– multiplication: a * b
– division (floating-point or integer): b / a
– modulus (remainder): b % a

CSC 120A - Berry College - Fall 2004 15

Division and Modulus

Integer
7 / 2 = 3
7 % 2 = 1

3 % 2 = 1
3 % -2 = 1
-3 % 2 = -1
-3 % -2 = -1

7 / 0 and 7 % 0 error
Floating-point
7.0 / 2.0 = 3.5
7.2 % 2.1 = 0.9
7.0 / 0.0 = infinity 7.0 % 0.0 = not a number (NAN)

6

CSC 120A - Berry College - Fall 2004 16

Assignment Statements

int num;
int alpha = 10;

num = 6;
num = num + alpha;
alpha = alpha % 7;

Remember: this = in Java is assignment, not
mathematical equality

CSC 120A - Berry College - Fall 2004 17

Increment / Decrement Operators

++ and ––
num++; is the same as num = num + 1;

Prefix as well as postfix versions:
num++; ++num;

num = 5; alpha = num++ * 3; // alpha = 15, num = 6
num = 5; alpha = ++num * 3; // alpha = 18, num = 6

CSC 120A - Berry College - Fall 2004 18

Operator Precedence

Determines which operator is applied first in an
expression having several operators
avgTemp = FREEZE_PT + BOIL_PT / 2.0;

Highest precedence: ()
++ -- (postfix)
++ -- (prefix)
+ - (unary)
* / %

Lowest precedence: + -

Change order of evaluation using parentheses

7

CSC 120A - Berry College - Fall 2004 19

Operator Associativity

In Java: * / % + - are left associative
– in an expression having two operators with the

same priority, the left operator is applied first

9 – 5 – 1 means (9 – 5) – 1 = 3

Evaluate:
7 * 10 - 5 % 3 * 4 + 9

= 71

CSC 120A - Berry College - Fall 2004 20

Type Conversion

Integers and floating-point numbers are
represented differently in the computer

What happens here?
double someDouble = 12; // Java automatically con-

// verts value to 12.0
int someInt = 4.8; // Java compiler gives an error

// “possible loss of precision”

CSC 120A - Berry College - Fall 2004 21

What do we get?

double A = 3 * 7 - 2;
double B = 7 / 3 + 1;
double C = 7 / 3 + 1.0;
double D = 7.0 / 2 + 1;

System.out.println(A);
System.out.println(B);
System.out.println(C);
System.out.println(D);

8

CSC 120A - Berry College - Fall 2004 22

More Conversion

Widening conversion
– e.g. from int to double (OK)

Narrowing conversion
– e.g. from double to int (not OK if implicit)

Type casting
– Tell Java explicitly to convert values
double someDouble = (double) 12;
int someInt = (int) 4.8; // Java accepts this now
System.out.println((double)(7/2));
System.out.println((double)(7) / (double)(2));

CSC 120A - Berry College - Fall 2004 23

Type Casting

Makes it clear that type mixing is
intentional
– Even if the program would run fine without the

explicit casts
Often necessary for correct results
int sum, count;
double average;
... // compute sum = 60, count = 80
average = sum / count; // average is 0.0

average = (double)sum / count; // this is better
average = (double)sum / (double)count; // or this

CSC 120A - Berry College - Fall 2004 24

String Conversion

Java automatically converts numbers to
Strings when mixed in an expression with
the + (concatenation) operator

double value = 27.85;
String answer = “The answer is: “ + 27.85;

// answer is now “The answer is: 27.85”

But be careful…

9

CSC 120A - Berry College - Fall 2004 25

String Conversion Examples

answer = “Result: “ + 27 + 18 + “ and “ + 9;
// answer is “Result: 2718 and 9”

answer = “Result: “ + 27 + “, “ + 18 + “ and “ + 9;
// answer is “Result: 27, 18 and 9”

Why isn’t the first one: “Result: 45 and 9”?
• Hint: precedence and evaluation order (associativity)

How about this:
answer = 27 + 18 + 9 + “ are the results.”

Or these:
answer = 27 + 18 + 9;
answer = “” + 27 + 18 + 9;
answer = “” + (27 + 18 + 9);

CSC 120A - Berry College - Fall 2004 26

Useful Methods in the Math class

Table 3.1 (page 122) in textbook
– Math.abs(x)
– Math.cos(x)
– Math.sin(x)
– Math.log(x) // natural logarithm (base=e)
– Math.pow(x,y)
– Math.min(x,y)
– Math.max(x,y)
– Math.random()
– Math.round(x)
– Math.sqrt(x)

Use them like this:
double root = Math.sqrt(99);

CSC 120A - Berry College - Fall 2004 27

String Methods

The length() method returns an int value
that is the number of characters in the string
String name = “Alexandra”;
int len = name.length(); // len = 9

indexOf() searches for a substring and
returns the beginning position in the string
(starting from 0) or -1 if it’s not a substring

String phrase = “The dog and the cat”;
int posA = phrase.indexOf(“the”); // posA = ?

int posB = phrase.indexOf(“rat”); // posB = -1

10

CSC 120A - Berry College - Fall 2004 28

Substrings

Method substring() returns a substring of a
string, but does not change the string itself
String name = “Programming and Problem Solving”;
name.substring(0,7); // “Program”
name.substring(7,15); // “ming and”
name.substring(10,10); // “”
name.substring(24,25); // “S”

– First parameter: starting position
– Second parameter: one past the ending position
– Returns: a String value

CSC 120A - Berry College - Fall 2004 29

Using substring Safely

Bad parameters result in a runtime error:
String name = “Programming and Problem Solving”;
name.substring(10,50);

// Error: String index out of range: 50

Safer method call:
String name = “Programming and Problem Solving”;
int start = 10;
int len = 40;
name.substring(start, Math.min(start+len,

name.length());

CSC 120A - Berry College - Fall 2004 30

String operations

What does this print out?

String fullname = “Jonathan Alexander Peterson Jr.”;
int start = fullname.indexOf(“Peterson”);
String name = “Mr. “ + name.substring(start,

name.length());

11

CSC 120A - Berry College - Fall 2004 31

Converting Strings to Numbers

The BufferedReader class allows us to get lines of
text (strings) from the keyboard
To convert input from String type to numeric type,
we must use the appropriate method:

Primitive type Object type Method
int Integer parseInt
long Long parseLong
float Float parseFloat
double Double parseDouble

CSC 120A - Berry College - Fall 2004 32

Getting Number Input

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

int myNumber;
System.out.println("Enter an integer number: ");
myNumber = Integer.parseInt(in.readLine());
System.out.println(myNumber + " squared is " +

(myNumber*myNumber));

What if evil user enters something besides a
number?
– Our program crashes with a

NumberFormatException (until Chapter 9)

CSC 120A - Berry College - Fall 2004 33

Applications with Multiple Class Files

Many benefits
– Smaller chunks of stuff to work with at a time
– Reuse in other applications
– Compile/test/debug one at a time

In Java, name each file exactly the same as the class
defined inside it
We only have to make classes public if they are to
be accessed by other entities outside the directory
– like the JVM – needs to get to the main method

New Name/NameDriver example
– Book uses “import Name;” statement – you don’t (you’ll

probably get an error if you try)

