

Storing and Using Data

- Computers must deal with many types of data
- Numbers
- Text
- Audio
- Images and graphics
- Video
- Computers are finite
- Must balance computational limits vs. our perception of sight and sound

Electronic Signals

Binary Representation

- Devices that store and manage data are less expensive and more reliable if they only have to represent one of two possible values
- One bit can represent two possibilities (0 or 1)
- N bits can represent 2^{N} possibilities
- Integers (we've discussed already)
- Base-2 numbers
- Two's complement notation
- Overflow

Representing Real Numbers

■ "Floating point" notation

- Number of digits fixed but radix point floats
- Formula: sign * mantissa * $10^{\text {exp }}$ (base-10)

Real value
Floating point
12001.00
-120.01
$+12001 * 10^{0}$
$-12001 * 10^{-2}$
$+12000 * 10^{-5}$

Representing Text

- Use a character set: list of characters and codes to represent each one
- ASCII (American Standard Code for Information Interchange)
- Originally used seven bits to represent each character, allowing for ??? unique characters
- Later evolved so that all eight bits were used which allows for ??? characters
$-12310 * 10^{-2}$
$+15555{ }^{*} 10^{4}$
- Binary floating point uses $2^{\exp }$
-123.10 $+15555 * 10^{4}$
155555000.00

ASCII Character Set

	ASCII									
	0	1	2	3	4	5	6	7	8	9
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT
1	LF	VT	FF	CR	So	SI	DLE	DC1	DC2	DC3
2	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS
3	RS	US	口	$!$	"	*	\$	\%	\&	.
4	1)	-	+	,	-	.	1	0	1
5	2	3	4	5	6	7	8	9	-	;
6	<	-	>	?	(a)	A	B	c	D	E
7	F	G	H	1	J	K	L	M	N	0
8	P	0	R	S	T	U	v	W	X	Y
9	Z	!	1	1	.	-	-	a	b	c
10	d	e	f	g	h	1	j	k	1	m
11	n	o	p	9	r	s	t	u	v	w
12	x	y	z	\{	1	\}	\sim	DEL		
CSC 120A - Berry College - Fall 2004										

Data Compression

■ Reducing the amount of space (bits and bytes) needed to store a piece of data

- Compression ratio
- size of the compressed data divided by the size of the original data
- Lossless: data can be retrieved without losing any of the original information
- Lossy: some information is lost in the process of compaction
- Common techniques
- keyword encoding
- run-length encoding
- Huffman encoding

Keyword Encoding

- Frequently used words replaced with a single character
- Characters used to encode cannot be part of the original text

Word	Symbol
as	\wedge
the	\sim
and	+
that	$\$$
must	$\&$
well	$\%$
those	$\#$

CSC 120A - Berry College - Fall 2004

Run-Length Encoding

- Single character may be repeated over and over again in a long sequence
- Not in English text, but often occurs in large binary data streams
- Sequence of repeated characters is replaced by
- a flag character,
- the repeated character,
- a single digit indicating how many times the character is repeated.

RLE Example

- AAAAAAA would be encoded as: *A7

■ *n5*x9ccc*h6 some other text *k8eee would be decoded into the following original text:
nnnnnxxxxxxxxxccchhhhhh some other text kkkkkkkkeee

- Original text: 51 characters
- Encoded string: 35 characters
- Compression ratio of $35 / 51$ (approximately 0.68)
- Can we encode repetition lengths greater than 9 ?

Huffman Encoding

■ Why should the character " X ", seldom used in text, take up the same number of bits as the blank, used very frequently?

- Huffman codes using variable-length bit strings to represent each character
- Few characters may be represented by five bits, another few by six bits, yet another few by seven bits, and so on...

Huffman Code Example

Huffman Code	Character
00	A
01	E
100	L
110	O
111	R
1010	B
1011	D

- DOORBELL would be encoded as: 1011110110111101001100100

Huffman Encoding (cont.)

- Using fixed-size bit string to represent each character (say, 8 bits), the binary form of the original string would be 64 bits
- Huffman encoding is 25 bits long
- Compression ratio of 25/64 (approximately 0.39)
- Important characteristic
- no bit string used to represent a character is the prefix of any other bit string used to represent a character
- To generate codes, figure out frequencies...

Representing Audio

- We perceive sound when a series of air compressions vibrate a membrane in our ear
- Stereo sends an electrical signal to a speaker to produce sound
- Signal is analog representation of sound wave
- Voltage in signal varies in direct proportion to the sound wave
- Digitizing the signal: sampling
- Periodically measure voltage of signal and record appropriate numeric value
- Sampling rate of around 40,000 times/second enough to create reasonable sound reproduction

Sampling (in general)

Storing Audio on a CD

- Surface of the compact disk (CD) has microscopic pits to represent binary digits
- Low intensity laser pointed as the disk
- Laser light reflects strongly if surface is smooth; reflects poorly if surface is pitted

Audio Formats

■ Popular formats: WAV, AU, AIFF, RA, MP3

- Currently dominant format for compressing audio data is MP3
- MP3 uses both lossy and lossless compression
- Analyzes the frequency spread and compares it to mathematical models of human psychoacoustics (the study of the interrelation between the ear and the brain)
- Discards information that can't be heard by humans
- Bit stream is then compressed using form of Huffman encoding

Color Cube

RGB Values

RGB Value			Actual Color
Red	Green	Blue	
0	0	0	black
255	255	255	white
255	255	0	yellow
255	130	255	pink
146	81	0	brown
157	95	82	purple
140	0	0	maroon

Color Depth

- Amount of data used to represent a color
- HiColor indicates a 16-bit color depth
- Five bits used for each number in RGB value and extra bit sometimes used for transparency
- TrueColor indicates a 24-bit color depth
- Each number in RGB value gets eight bits
- More bits used for RGB values = more different colors can be represented

Indexed Color

- Particular application may support only a certain number of specific colors
- Creates a palette from which to choose
- E.g., Netscape Navigator's color palette:

Digitizing Images and Graphics

- We can digitize an image by representing it as a matrix of dots, called pixels
- Each pixel stores an RGB value
- The number of pixels used is called the resolution
- This method of representing an image (on a pixel-by-pixel basis) is called raster graphics format
- Common raster file formats
- BMP (Windows bitmap), GIF, JPEG

Representing Video

- Video is a series of images
- 30 or 60 frames per second, for example
- Huge amount of data in uncompressed form
- Not feasible to represent without compression
- A video codec (COmpressor/DECompressor) refers to methods used to shrink the size of a movie
- Almost all video codecs use lossy compression to minimize the huge amounts of data associated with video
- Types of compression
- Temporal compression: looks for differences between consecutive frames (don't store repeated information)
- Spatial compression: removes redundant information within a frame (compress individual images)

