
1

Principles of
Computer Science I

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004

Lecture Unit 5

CSC 120A - Berry College - Fall 2004 2

Homework 3

Posted on Viking Web
Due Wednesday, September 22

DON’T LEAVE
IT UNTIL THE
LAST MINUTE

CSC 120A - Berry College - Fall 2004 3

Review: Chapter 3

Arithmetic expressions
Relationship between primitive and reference types
Why different numeric types have different ranges
of values
Differences between integral and floating-point
types
How precedence rules affect evaluation of an
expression
Implicit type conversion and explicit casting
String and Math operations (methods)
Value-returning methods

CSC 120A - Berry College - Fall 2004 4

Review: Java Programs
Java applications (programs) are made up of
classes
Classes are blueprints for objects
– Define what data objects need (fields)
– Define operations on that data (methods)
(Classes can also contain static fields and methods, which

are not associated with an object)

Fields have a name and type
Methods have a name, return type, and
parameters
– Method bodies contain a bunch of statements
– Methods can define local variables to store

intermediate calculations

CSC 120A - Berry College - Fall 2004 5

Flow of Control

The order in which statements are executed
Recall the 5 basic control structures:
– Sequence
– Selection
– Loop
– Subprogram
– Asynchronous

So far we have just defined methods with a
sequence of statements in their body

CSC 120A - Berry College - Fall 2004 6

Write a (value-returning) method…

… to convert an integer representation of a SSN into a
String formatted as “nnn-nn-nnnn” (we did this before)

public static String ssnToStr(int ssn) { … }

What happens if we call the method with these
arguments:

– ssnToStr(123456789);
– ssnToStr(012345678); // !!!
– ssnToStr(12345678);

2

CSC 120A - Berry College - Fall 2004 7

SsnToStr Program

public class SsnToStr {

public static String ssnToStr(int ssn) {

String ssnstr;

ssnstr = "" + (ssn/1000000) + "-" +

((ssn%1000000)/10000) + "-" +

(ssn%10000);

if (ssn < 100000000) ssnstr = "0" + ssnstr;

return ssnstr;

}

public static void main(String args[]) {

System.out.println(ssnToStr(123456789));

System.out.println(ssnToStr(12345678));

}

}
CSC 120A - Berry College - Fall 2004 8

The Selection Control Structure

Use selection or branching when you want
the computer to choose between alternative
actions
Make an assertion (a test condition)
– If true, computer executes one (or more)

statement(s)
– If false, computer executes another

CSC 120A - Berry College - Fall 2004 9

Java if-else Statement

if (b)

statementA;

else

statementB;

b is an expression that evaluates to a
boolean value
boolean data type constants:
– true

– false

CSC 120A - Berry College - Fall 2004 10

Other Forms of the if Statement
if (b)

statementA;

if (b1)

statementA;

else if (b2)

statementB;

else

statementC;

if (b1)

statementA;

else if (b2)

statementB;

if (b1) {

statementA;

statementB;

statementC;

}

Wherever a single statement appears, we can instead put a
block of statements enclosed in a pair of braces

Notice indentation style of the statements that depend on the
conditional test

CSC 120A - Berry College - Fall 2004 11

Logical Expressions

Arithmetic expressions (e.g., 1+2) evaluate to
a numeric value
Logical expressions (or boolean expressions)
evaluate to a boolean value
Logical expressions are made up of:
– boolean variables or constants
– relational operators
– logical operators

CSC 120A - Berry College - Fall 2004 12

Relational Operators

Compare two expressions
– In other words, they test a relationship between two

expressions or values

Operator Relationship tested
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

In the ssnToStr method:
if (ssn < 100000000) ssnstr = "0" + ssnstr;

3

CSC 120A - Berry College - Fall 2004 13

Approximating Factorial
The factorial of a number n is 1*2*...*)2(*)1(* −− nnn . Stirling’s formula
approximates the factorial for large values of n:

n

n

e
nn

n
π2

!=

where 14159265.3=π and 718282.2=e .

Write a Java program that inputs an integer value, stores it in a double variable n,
calculates the factorial of n using Stirling’s formula, assigns the (truncated) result to a
long integer variable, and then displays the result.

Depending on the value of n, you should obtain one of these results:

• A numerical result.
• If n equals 0, the factorial is defined to be 1.
• If n is less than 0, the factorial is undefined.
• If n is too large, the result exceeds Long.MAX_VALUE.

CSC 120A - Berry College - Fall 2004 14

Comparison Examples

Let x=5 and y=10, what do these expressions
evaluate to:

x != y x < y

x*y == y*x x*2 <= y

‘M’ < ‘R’ ‘m’ < ‘r’

‘m’ < ‘R’

0 < 9 ‘0’ < 9

Beware the difference between the
assignment operator (=) and relational
operator (==)
– Some people call == “equals equals”

CSC 120A - Berry College - Fall 2004 15

Comparing Strings

What does this print out?
String astr = "Hello World";

String bstr = "Hello";

String cstr = "World";

String dstr = bstr + " " + cstr;

String estr = “Hello World”;

System.out.println(astr + "\n" + dstr);

System.out.println(astr == dstr);

System.out.println(astr == estr);

System.out.println(astr != dstr);

CSC 120A - Berry College - Fall 2004 16

String Comparison (cont.)

Comparing two objects using == or !=
means comparing the value of the pointers
For object comparison, we can often use the
compareTo method
– compareTo returns 0 if two objects are equal, a

positive integer if one is “greater” than the other,
and a negative integer if one is “less” than the
other

For String objects, we can also use:
strA.equals(strB);

strA.equalsIgnoreCase(strB);

CSC 120A - Berry College - Fall 2004 17

String Comparison (cont.)

The toLowerCase() method for Strings
converts all the characters to lower case
The toUpperCase() method for Strings
converts all the characters to upper case

We can apply String methods to literal
constants as well

name.equals(“Doe”)

“Doe”.equals(name)

CSC 120A - Berry College - Fall 2004 18

String astr = "Hello World";

String bstr = "Hello";

String cstr = "World";

String dstr = bstr + " " + cstr;

String estr = "Hello World";

System.out.println(astr + "\n" + dstr);

System.out.println(astr == dstr);

System.out.println(astr == estr);

System.out.println(astr != dstr);

System.out.println(astr.equals(dstr));

System.out.println(astr.equals(dstr.toLowerCase()));

System.out.println(astr.equalsIgnoreCase

(dstr.toUpperCase()));

System.out.println(bstr.compareTo(cstr));

4

CSC 120A - Berry College - Fall 2004 19

Checking for Alphabetical Order

Strings are compared by comparing each character,
beginning from the first one
Characters are compared according to their ordering
in the Unicode character set
– All capital letters come before lower case

“Macauley”.compareTo(“MacPherson”) // >

– Better to convert to lower (or upper) case before comparing
words for alphabetical order

(“Macauley”.toLowerCase()).compareTo

(“MacPherson”.toLowerCase()) // <

CSC 120A - Berry College - Fall 2004 20

Comparing Strings of Different Length

Shorter string is “less”
String word = “Small”;

word.compareTo(“Smaller”) < 0; // true

Recap on String operations:
– Apply a method to one String object
– Provide the second object (e.g. for comparison)

through method argument
object1.method(object2);

– Compares the contents of object1 data fields to
those of object2

CSC 120A - Berry College - Fall 2004 21

Logical Operators

Used to combine assertions (expressions of
boolean value)
In English,
– If x > 6 and y < 5 then …
– If x = 5 or y > 11 then …

In Java,
– And b1 && b2
– Or b2 || b2
– Not ! b

&& and || are binary operations, ! is unary

CSC 120A - Berry College - Fall 2004 22

Logical Equivalences

!(a == b) a != b

!(hours < 40) hours >= 40

!(a==b || a==c) a != b && a != c

!(a==b && c > d) a != b || c <= d

!(x!=y && y==z) ?

!(x>y && (z/5>2 || q!=y)) ?

!((false || true) && true)

DeMorgan’s Law: distributing ! over &&, ||

CSC 120A - Berry College - Fall 2004 23

Truth tables

And

Or

Not

falsefalsefalse

falsetruefalse

falsefalsetrue

truetruetrue

X && YYX

falsefalsefalse

truetruefalse

truefalsetrue

truetruetrue

X || YYX

truefalse

falsetrue

!XX

CSC 120A - Berry College - Fall 2004 24

Short-Circuit Evaluation

Full evaluation: evaluate both
subexpressions of a logical operator
Short-circuit (in Java,C,C++): evaluate
subexpressions starting from the left, stop as
soon as the value of the entire expression is
determinable

c <= d || e == f

a == 5 && b < 5

Why useful?
if (i != 0 && n/i > 500) ...

5

CSC 120A - Berry College - Fall 2004 25

Bitwise Logical Operators

Operate on bit by bit on data values
– And &
– Or |
– Not ~
– (some others …)

Can apply to either boolean or integral data
types (~ doesn’t work with booleans)
Are not short-circuit operators

CSC 120A - Berry College - Fall 2004 26

Operator Precedence

Highest precedence: ()
!
++ -- (postfix)
++ -- (prefix)
+ - (unary)
* / %
+ -
< <= > >=
== !=
&&
||

Lowest precedence: = += *= …

Most associate left-to-right, except ! associates from
right

CSC 120A - Berry College - Fall 2004 27

Translate to Java

“midterm grade or final grade equals A”
“i equals either 3 or 4”
“y is between 12 and 24”
“x, y, and z are greater than 0”
“x is equal to neither y nor z”

CSC 120A - Berry College - Fall 2004 28

Relational Operators with Floating-Point

Don’t compare floating-point numbers for
equality
– Round-off errors accumulate in computation
– Expression may evaluate to .9999999 instead of

1.0
Test floating-point numbers for equality by
subtracting and comparing to maximum
allowable difference
– Math.abs(sum – 1.0) < 0.0000001

CSC 120A - Berry College - Fall 2004 29

if/else Statement with Blocks

Surround block with { … }
if (divisor != 0) {

System.out.println(“Division performed.”);

result = dividend / divisor;

} else {

System.out.println(“Cannot divide by zero.”);

result = Integer.MAX_VALUE;

}

Alternate brace style (be consistent)
if (...)

{

...

}

else

{

...

}
CSC 120A - Berry College - Fall 2004 30

Nested if Statements
if today is Saturday or Sunday

else

Go to work

if it is raining

Sleep late

else

Get up and go outside

6

CSC 120A - Berry College - Fall 2004 31

Multiway Branches and Efficiency
if (month == 1) monthName = “January”;

if (month == 2) monthName = “February”;

if (month == 3) monthName = “March”;

...

versus
if (month == 1) monthName = “January”;

else

if (month == 2) monthName = “February”;

else

if (month == 3) monthName = “March”;

else ...

Style: Keep else’s at same indentation level for this
“if-else-if” structure
Be careful about braces
Multiple if’s may allow several cases to execute;
if-then-else structure only allows one case

CSC 120A - Berry College - Fall 2004 32

Using Nested if Statements

Display a message indicating appropriate
activity for outdoor temperature:
– Swimming temp > 85
– Tennis 70 < temp <= 85
– Golf 32 < temp <= 70
– Skiing 0 < temp <= 32
– Dancing temp <= 0

CSC 120A - Berry College - Fall 2004 33

Dangling else Statements
Sometimes confusing to match else with if
Correct:
if (avg < 70.0)

if (avg < 60.0)

System.out.println(“Failing”);

else

System.out.println(“Passing but marginal”);

Incorrect (semantically):
if (avg >= 60.0)

if (avg < 70.0)

System.out.println(“Passing but marginal”);

else System.out.println(“Failing”);

Correct (use braces):
if (avg >= 60.0) {

if (avg < 70.0)

System.out.println(“Passing but marginal”);

}

else System.out.println(“Failing”); CSC 120A - Berry College - Fall 2004 34

Exercises

Implement the Math.abs(x) method
Implement the Math.min(x,y) method

Write a program that takes as input a
number less than 256 and prints out its
binary (base-2) representation
– Redo it, factoring out repetitious code into a

method

Write a program to input the first 9 digits of
an ISBN number and compute the tenth
– Use the Keyboard class for input

CSC 120A - Berry College - Fall 2004 35

Exercise: Complex Numbers

Define a data type (class) for complex numbers
– Represent a complex number by explicitly storing the real

and the imaginary parts as floating point numbers
– Support the following standard arithmetic operations: add,

multiply, absolute value (magnitude), opposite (negative),
and complex conjugate.

– Also support the utility operations: initialization, equality
comparison, and conversion to string representation.

– As an example, a client program should be able to write
code like the following:

public static void main(String[] args) {

Complex a = new Complex(5.0, 6.0); // 5 + 6i

Complex b = new Complex(-2.0, 3.0); // -2 + 3i

Complex c = b.times(a); // -28 + 3i

System.out.println("c = " + c);

}

CSC 120A - Berry College - Fall 2004 36

Designing Large Applications

Most programs we’ve written so far have
been fairly simple
– Only a main method, or few others
– Not much interaction between objects

Once we learn some more basic control
structures (loops), we will start to build
larger, more complex programs
Will need to start thinking about design and
reusability of our classes
Two important (related) concepts:
– Encapsulation
– Abstraction

7

CSC 120A - Berry College - Fall 2004 37

Encapsulation

A capsule protects contents from outside
contaminants or harsh conditions
Design classes so that the internal
implementation is protected from external
code
– External code interacts only through a well-

designed interface
Benefits:
– Simplifies design of large programs by

developing parts in isolation
– Modifiability
– Reuse

CSC 120A - Berry College - Fall 2004 38

Encapsulated vs. Exposed
Implementation

Can be
changed
without

affecting
external

code

Changes
can affect
external

code

Encapsulated Exposed

External code

CSC 120A - Berry College - Fall 2004 39

Class Reuse

Vehicle Class

Vehicle
Use

Scheduling
Program

Vehicle
Maintenance
Scheduling

Program

Vehicle
Tax

Accounting
Program

CSC 120A - Berry College - Fall 2004 40

Example: Circle program
A non-encapsulated, non-reusable program:
import java.io.*;

public class Circle {

public static void main(String [] args) throws IOException {

float diameter; // Diameter of the cirlce

float radius; // Radius

float area; // Area

float circumference; // Circumference

final float PI = 3.14159F; // PI

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

System.out.println("\nEnter the radius of the circle:");

radius = Float.parseFloat(in.readLine());

diameter = radius*2;

area = PI*radius*radius;

circumference = 2*PI*radius;

System.out.println("Radius: " + radius);

System.out.println("Diameter: " + diameter);

System.out.println("Area: " + area);

System.out.println("Circumference: " + circumference);

}

}

CSC 120A - Berry College - Fall 2004 41

Circle version 2 (more reusable)
public class CircleDriver {

public static void main(String [] args) throws IOException

{

CircleNonEncap c = new CircleNonEncap(4);

c.radius = 6;

System.out.println("Diameter is: " + c.getDiameter());

}

}

class CircleNonEncap {

public int radius;

// construct a circle object with given radius

public CircleNonEncap(int newr) {

radius = newr;

}

public int getRadius() { return radius; }

public int getDiameter() { return radius * 2; }

}
CSC 120A - Berry College - Fall 2004 42

Circle version 2, Modifiability?

class CircleNonEncap {

public int diameter;

// construct a circle object with given radius

public CircleNonEncap(int newr) {

diameter = newr * 2;

}

public int getRadius() { return diameter/2; }

public int getDiameter() { return diameter; }

}

Problem: The internal implementation is
exposed
– We don’t want to let outside code depend on how the

circle is represented by this class

8

CSC 120A - Berry College - Fall 2004 43

Circle
version 3

public class Circle {
 // publically accessible class constants
 public static final double PI = 3.14159;

 // private data of the implementation
 private double radius;

 // Constructor: inputs a radius value from the keyboard
 public Circle() {
 Keyboard in = new Keyboard();
 radius = in.readDouble();
 if (radius < 0.0) radius = 0.0;
 }

 // Constructor: takes a radius value as a parameter
 public Circle(double new_r) {
 if (new_r >= 0.0) radius = new_r;
 else radius = 0.0;
 }

 // "accessor" methods
 public double getRadius() { return radius; }
 public double getDiameter() { return radius * 2; }
 public double getArea() { return PI * radius * radius; }
 public double getCircumf() { return 2 * PI * radius; }

 public void setRadius(double new_r) {
 if (new_r >= 0.0) radius = new_r;
 }

 public void setDiameter(double new_d) {
 if (new_d >= 0.0) radius = new_d / 2.0;
 }

 public void printCircleData() {
 System.out.println("Radius: " + getRadius());
 System.out.println("Diameter: " + getDiameter());
 System.out.println("Area: " + getArea());
 System.out.println("Circumference: " + getCircumf());
 }

. . .

CSC 120A - Berry College - Fall 2004 44

Price of Exposed Implementations

ZIP codes.
– In 1963, the USPS began using a 5 digit ZIP (Zoning

Improvement Plan) code to improve the sorting and
delivery of mail. Programmers wrote lots of software that
assumed that zip codes would remain 5 digits forever, and
represented them in their programs using a single integer.
In 1983, the USPS introduced an expanded ZIP code called
ZIP+4 which consists of the original 5 digit ZIP code plus 4
extra digits to assist in delivery. This broke hundreds of
brittle programs and required millions of dollars to fix.
One of the lessons we should learn from this is to use
encapsulated data types so that if we must change the data
representation, the effects are localized to one abstract data
type (i.e. class, in Java) and we don't need to search
through millions of lines of code to find all of the places
where we assumed ZIP codes were 5 digits long.

CSC 120A - Berry College - Fall 2004 45

Time Bombs

Y2K bug
On September 14, 2004, Los Angeles airport was
shut down due to software breakdown of a radio
system used by air traffic controllers to
communicate with pilots. The program used a
Windows API function call GetTickCount() which
returns the number of milliseconds since the
system was last rebooted. The value is returned as a
32 bit integer, so after approximately 49.7 days it
“wraps around.” The software developers were
aware of the bug, and instituted a policy that a
technician would reboot the machine every month
so that it would never exceed 31 days of uptime.
Oops. LA Times blamed the technician, but the
developers are more to blame for shoddy design.

CSC 120A - Berry College - Fall 2004 46

Abstraction

To abstract = to simplify or eliminate irrelevant
details
Putting encapsulation into practice
– Separating the logical properties of an object from its

implementation
Abstraction in other disciplines and across
disciplines:
– Chemistry is an abstraction of Physics: The purpose of Chemistry

is to understand molecular interactions without resorting to particle
physics to explain every phenomenon.

– Biology is an abstraction of Chemistry: The purpose of Biology is
to understand the growth and behavior of living things without
resorting to molecular explanations for every aspect.

CSC 120A - Berry College - Fall 2004 47

Abstraction: Date Class

get/setDay

get/setMonth

get/setYear

Interface

long julianDay

class Date

Implementation
CSC 120A - Berry College - Fall 2004 48

Abstraction, cont.

Abstraction does not mean the external view
of data and implementation has to be
different…
– Date class could have used internal fields for the

day, month, and year
…but it should be irrelevant to the user of
the class
– Changes later on do not affect external code

9

CSC 120A - Berry College - Fall 2004 49

Debugging
/* A messed up class ... can you

/* find (at least!) 6 errors?

public class CircleDriver {

public static void main(String[] args) {

c1 = new Circle(.90);

String c2 = new Circle();

c1.scale(1/2); // reduce to half size

boolean b = (c1==c2);

if (b = true)

System.out.print("They are ");

System.out.println("equal!");

}

}

CSC 120A - Berry College - Fall 2004 50

Types of Errors

Syntactic errors
– Found by the Java compiler
– Misspellings, undeclared identifiers, missing

semicolons/braces/parentheses, mismatched
operands

Semantic (Logical) errors
– Mistakes that result in wrong answer(s) when

the program is run
– May be misspellings that are syntactically correct
– Using = instead of ==; mistyping a constant

literal; not enclosing braces around block of an if
statement

– Java detects very few of these: e.g. dividing by
zero

CSC 120A - Berry College - Fall 2004 51

Testing Strategies

Purpose of testing is not to verify code is correct; it
is to find flaws in your program
– A successful test is one in which you find an error in your

code
Testing is part of the problem-solving and
implementation stages (software life-cycle)
In real world, tester and programmer are two
different people
Some hints
– Compile and test your program early and often
– Test after every change – modifications to one part may

affect others
– Use debugging printouts

CSC 120A - Berry College - Fall 2004 52

Testing Process

Problem solving Algorithm Algorithm Semantic
walk-through

Phase Result Test technique Type of error

Implementation Coded program Code walk-thr., Syntax
Trace Semantic

Compilation Object program Compiler-generated Syntax
error messages

Execution Output Implement Typographic sem.
test plan Algorithm sem.

CSC 120A - Berry College - Fall 2004 53

Testing Techniques

Walk-through
– Perform a manual simulation of the code or

design
Inspection
– Read the code or design line by line to identify

errors
Execution trace (hand trace)
– Pretend you are the computer
– Walk through program code with some actual

values to trace execution of the program
– Test branches using different data sets

CSC 120A - Berry College - Fall 2004 54

Test Cases

Test all possible paths in your code using
different sets of input data
White-box testing (code coverage)
– Design tests while looking at the actual code

implementation in the methods
Black-box testing (data coverage)
– Test as many allowable data values as possible

for a method without looking at the actual code
– Considering pre- and post-conditions of

methods, use input that tests boundary cases and
typical scenarios

10

CSC 120A - Berry College - Fall 2004 55

Developing a Test Plan

For a given program, a document specifying
– Test cases that should be tried
– Reason for each test case
– Expected output

Run the program and compare observed
output to the expected
Example: Complex numbers

