
1

Principles of
Computer Science I

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004

Lecture Unit 7

CSC 120A - Berry College - Fall 2004 2

Review Chapter 4

Boolean data type and operators (&&, ||,…)
Selection control flow structure
– if, if-else, nested if structures

Testing, algorithm walk-though, execution
trace
Encapsulation and abstraction

CSC 120A - Berry College - Fall 2004 3

File Input/Output

Up till now, we have been interacting with our
programs through screen and keyboard
It is also useful to be able to input and output data
using a file on disk instead
Using a file for input allows us to:
– Handle large quantities of data
– Type a little bit at a time
– Go back and fix mistakes
– Can re-run the program with the same data without having

to retype it
Using a file for output we can
– View output on the screen or print it
– Examine output without having to re-run the program
– Store data that is used as input for another program

CSC 120A - Berry College - Fall 2004 4

Five Steps to File IO

1. Import Java library: java.io.*
2. Declare file variable identifier
3. Instantiate file object and assign to the file

variable
4. Use methods of the file object to read or

write data
5. Call a method to close the file when we are

done

CSC 120A - Berry College - Fall 2004 5

File IO: Step 1

import java.io.*;

We already know how to do that
For files, we will be using the FileReader,
FileWriter, BufferedReader, and PrintWriter
classes from the library
– FileReader and FileWriter provide basic

functionality of reading/writing one character at
a time

– PrintWriter allows us to output data to a file just
like we’ve been outputting data to the screen
with the System.out object

CSC 120A - Berry College - Fall 2004 6

File IO: Step 2

PrintWriter outFile;
BufferedReader inFile;

Declare file identifiers like any other
variable
BufferedReader for input files, PrintWriter
for output files
– These classes work with character stream files

(files that we view and change in a text editor)
• Data is organized in lines (sequences of characters)
• Each line ends with an EOL (end-of-line) mark that

editor doesn’t display – it goes to the next line as it
places characters on the screen

2

CSC 120A - Berry College - Fall 2004 7

File IO: Step 3

outFile = new PrintWriter(new FileWriter(“outFile.txt”));
inFile = new BufferedReader(new FileReader(“inFile.txt”));

Create file objects for use in your program
and associate them with physical files on
the disk
With input file: file pointer is placed at the
first character in the file
With output file: creates a new empty file, or
erases old contents of existing file

CSC 120A - Berry College - Fall 2004 8

File IO: Step 4 (Output)

outFile.print(“The answer is “ + 49);
outFile.println(“Rate = “ + rate);

Just like System.out.print and println
println() adds an EOL mark to the end of the
string as it is saved in the file

CSC 120A - Berry College - Fall 2004 9

File IO: Step 4 (Input)

String line = inFile.readLine();
int num = Integer.parseInt(inFile.readLine());

Exactly like reading data from the keyboard,
because we are using the same BufferedReader
class
readLine() discards the EOL mark as it is reading a
line of characters from the file
– returns null if we’ve reached the end of file (EOF)

We can skip over a bunch of letters in a file:
inFile.skip(100L); // L means it’s a long integer literal

Throws an exception if we try to skip past the end
of the file
– Need to include “throws IOException” clause after

methods that use these input methods
CSC 120A - Berry College - Fall 2004 10

File IO: Step 5

inFile.close();
outFile.close();

Breaks the association between the physical
file and the variable (inFile/outFile)
Makes file available for use by other
programs
Be nice: close files once you are done with
them
A simple program using files… (UseFile.java)

CSC 120A - Berry College - Fall 2004 11

Looping

Control structure that causes a statement or
group of statements to be executed
repeatedly
Pattern:
while (<boolean-expression>)

<statement>
Example:
while (count <= 25)

count = count + 1;
Body of a loop can be single statement or a
group of statements enclosed in { … }

CSC 120A - Berry College - Fall 2004 12

Flow Charts

b? statement1

statement2

true

false

b?

statement2statement1

truefalse

statement3

if (b)
statement1;

statement2;

if (b)
statement1;

else
statement2;

statement3;

b? statement1

statement2

true

false

while (b)
statement1;

statement2;

3

CSC 120A - Berry College - Fall 2004 13

Loop Terminology

Loop entry: point at which flow of control
reaches first statement inside a loop
Iteration: an individual pass through, or
repetition of, the body of a loop
Loop test: point at which while expression is
evaluated to decide whether to loop or not
Loop exit: point at which control passes to
first statement after the loop body
Termination condition: condition that
causes loop to be exited

CSC 120A - Berry College - Fall 2004 14

Types of Loops

Count-controlled loop: a loop that executes a
specified number of times
Event-controlled loop: loop that terminates
when something happens inside the body to
signal that the loop should be exited

Making an angel food cake:
– “Beat the mixture 300 strokes” (count-controlled

loop)
– “Cut with a pastry blender until the mixture

resembles coarse meal” (event-controlled loop)

CSC 120A - Berry College - Fall 2004 15

Count-Controlled Loops

Use a variable (loop control variable) in the test
Before entering the loop, must initialize the loop
control variable
In each iteration of the loop, must update (usually
increment by 1) the loop control variable

int loopCount = 1;
while (loopCount <= 10) {

…
loopCount = loopCount + 1;

}

CSC 120A - Berry College - Fall 2004 16

Example: Count-Controlled Loop

int mult = 1;
while (mult <= 10) {

System.out.println(“2 times “ + mult + “ is “ +
(2 * mult));

mult++; // same as: mult = mult + 1;
}

Redo BinaryConv.java using a loop…
If you forget to properly initialize or update
the loop control variable your program will
go into the famous infinite loop.

CSC 120A - Berry College - Fall 2004 17

Event-Controlled Loops

Loops often used to read in and process long
lists of data
– Amount of data is unknown so we cannot use a

count-controlled loop
Instead, we read/process data until some
special data value is reached, or until the
end of file
A sentinel (or trailer) value in a file is used
as a signal that the end of data to be
processed has been reached
– E.g. In a program that reads in a calendar dates,

we may use the date February 31 as a sentinel

CSC 120A - Berry College - Fall 2004 18

Loop with a Sentinel Value

String date = inFile.readLine(); // “priming read”
while (!date.equals(“0231”)) {

…
date = inFile.readLine();

}

Priming read: before entering the loop, we
must read the first data value
At the end of the loop body, read in the next
data value

4

CSC 120A - Berry College - Fall 2004 19

Reading Until EOF

String line = inFile.readLine(); // “priming read”
while (line != null) {

…
line = inFile.readLine();

}

null is a special Java constant value; think of
it as referring to a non-existent address
null is not equivalent to an empty String “”

CSC 120A - Berry College - Fall 2004 20

Tasks Accomplished by Looping

Counting
– Keep track of the number of times loop is

executed
Summation
– Computing the sum of a set of data values

Exercise: Write a program to read in integers
from a file, “temperature.txt”, compute their
average as a double value, and print the
average on the screen
Exercises: Redo the BinaryConv and
ISBNDigit programs we wrote earlier

CSC 120A - Berry College - Fall 2004 21

From Textbook, pg. 232

…
count = 0; // Initialize event counter
sum = 0; // Initialize sum
notDone = true; // Initialize loop control flag

while (notDone) {
line = dataFile.readLine(); // Get a line
if (line != null) { // Got a line?

number = Integer.parseInt(line);// Convert line to int
if (number % 2 == 1) { // Is the int value odd?

count++; // Yes—increment counter
sum += number; // Add value to sum
notDone = (count < 10); // Update loop control flag

}
} else {

errorFile.println(“EOF reached unexpectedly.”);
notDone = false; // Update loop control flag

}
}

Example of a flag-controlled loop

CSC 120A - Berry College - Fall 2004 22

Designing Loops

Design flow of control
1. What condition ends the loop?
2. How should the condition be initialized?
3. How should the condition be updated?

Design processing within loop body
4. What is the process being repeated?
5. How should the process by initialized?
6. How should the process be updated?

Specify state upon loop exit
7. What is the state of code upon exiting the loop?

CSC 120A - Berry College - Fall 2004 23

Designing Flow of Control
What makes the loop stop?

. Problem Statement Termination condition .
“Sum 365 temperatures” Counter reaches 365

(count-controlled loop)
“Process all data in the file” EOF occurs (EOF-controlled)
“Process until 10 odd integers have 10 odd integers read

been read” (event counter)
“The end of the data is indicated Negative value encoun-

by a negative test score” tered (sentinel-controlled)

Initialization and update
– Count-controlled: set iteration counter to 1; increment

counter at end of each iteration
– Sentinel-controlled: open file, input initial value before

entering the loop (priming read); input next value at end of
each iteration

– Flag-controlled: set boolean flag variable; update
appropriately within the loop as condition changes CSC 120A - Berry College - Fall 2004 24

Designing Process Within the Loop

Decide what a single iteration should do
– Count
– Sum
– Read data
– Perform calculation
– Print out something
– …

Initialize and update variables
appropriately

5

CSC 120A - Berry College - Fall 2004 25

Loop Exit

Check the condition of variables upon loop
exit (especially check for off-by-one errors)
lineCount = 1;
while ((inLine = inFile.readLine()) != null)

lineCount++;
System.out.println(“There are “ + lineCount +

“ lines in the file.”);
– (above code is incorrect)

CSC 120A - Berry College - Fall 2004 26

Nested Loops

Create more complex and useful control
structures (just like if statements)
Initialize outer loop
while (Outer-loop-condition) {

...

...

}

Initialize inner loop

while (Inner-loop-condition) {
Inner loop processing

and update

}

CSC 120A - Berry College - Fall 2004 27

Example: Counting Commas in a File

Partial program on page 236-237
– Design loops using the seven steps on slide 22
– Use the charAt(n) method of the String class,

which returns the character at a given position in
the string (“ABCDE”.charAt(0) returns ‘A’)

Exercise: How would you implement the
MakeSpaces.spaces(n) method that we used
in lab?

public String spaces(int n) { …

CSC 120A - Berry College - Fall 2004 28

Loop Testing and Debugging

Develop test data for loops to check all possible
scenarios
– Loop is skipped entirely
– Loop body executed exactly once
– Loop executes a normal number of times
– Loop fails to exit

Check loop termination condition carefully
Watch out for “off-by-one” errors
Trace execution of loop by hand, step by step
Use debugging output statements to isolate errors
System.out.println(“count = “ + count);
– Can be commented out later

CSC 120A - Berry College - Fall 2004 29

What’s Wrong?

Code segment to print out the even numbers
between 1 and 15:

int n = 2;
while (n != 15) {

n = n + 2;
System.out.print(n + “ “);

}

(2 logical errors)

CSC 120A - Berry College - Fall 2004 30

What’s Wrong II?

Code segment to copy a line of text from one
file to another, character by character:

String line = inFile.readLine();
int count = 1;
while (count < line.length()) {

outFile.print(line.charAt(count));
count++;

}
outFile.println();

6

CSC 120A - Berry College - Fall 2004 31

Asides

“Uninitialized variable” error
File types and extensions
– “.txt” “.doc” “.in” “.out” “.pdf” “.ppt” “.html” etc.

Types of input
– Interactive vs. non-interactive

Order of statements in a program
– Physical vs. logical

Truth tables

CSC 120A - Berry College - Fall 2004 32

Homework and Labs
Be sure to include header comments on all program
files you write
– Name, date, course, etc.
– A description of the class or program in the file
– Design issues, assumptions you made

Comment methods and fields appropriately
– For example, the hundreds() method of the Check program

Check programs
– 40 is spelled “forty”☺

Rational number data type
– String constructor: public Rational(String str) { …
– equals() method

• Comparing integers, you can use ==
• Only use the Math.abs and TOLERANCE stuff if you have to

compare double values
Try to factor repeated blocks of code into a method
(be lazy)

