
1

Principles of
Computer Science I

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004

Lecture Unit 7

CSC 120A - Berry College - Fall 2004 2

Review Chapter 4

� Boolean data type and operators (&&, ||,…)
� Selection control flow structure

– if, if-else, nested if structures
� Testing, algorithm walk-though, execution

trace
� Encapsulation and abstraction

CSC 120A - Berry College - Fall 2004 3

File Input/Output

� Up till now, we have been interacting with our
programs through screen and keyboard

� It is also useful to be able to input and output data
using a file on disk instead

� Using a file for input allows us to:
– Handle large quantities of data
– Type a little bit at a time
– Go back and fix mistakes
– Can re-run the program with the same data without having

to retype it
� Using a file for output we can

– View output on the screen or print it
– Examine output without having to re-run the program
– Store data that is used as input for another program

CSC 120A - Berry College - Fall 2004 4

Five Steps to File IO

1. Import Java library: java.io.*
2. Declare file variable identifier
3. Instantiate file object and assign to the file

variable
4. Use methods of the file object to read or

write data
5. Call a method to close the file when we are

done

CSC 120A - Berry College - Fall 2004 5

File IO: Step 1

import java.io.*;

� We already know how to do that
� For files, we will be using the FileReader,

FileWriter, BufferedReader, and PrintWriter
classes from the library
– FileReader and FileWriter provide basic

functionality of reading/writing one character at
a time

– PrintWriter allows us to output data to a file just
like we’ve been outputting data to the screen
with the System.out object

CSC 120A - Berry College - Fall 2004 6

File IO: Step 2

PrintWriter outFile;
BufferedReader inFile;

� Declare file identifiers like any other
variable

� BufferedReader for input files, PrintWriter
for output files
– These classes work with character stream files

(files that we view and change in a text editor)
• Data is organized in lines (sequences of characters)
• Each line ends with an EOL (end-of-line) mark that

editor doesn’t display – it goes to the next line as it
places characters on the screen

2

CSC 120A - Berry College - Fall 2004 7

File IO: Step 3

outFile = new PrintWriter(new FileWriter(“outFile.txt”));
inFile = new BufferedReader(new FileReader(“inFile.txt”));

� Create file objects for use in your program
and associate them with physical files on
the disk

� With input file: file pointer is placed at the
first character in the file

� With output file: creates a new empty file, or
erases old contents of existing file

CSC 120A - Berry College - Fall 2004 8

File IO: Step 4 (Output)

outFile.print(“The answer is “ + 49);
outFile.println(“Rate = “ + rate);

� Just like System.out.print and println
� println() adds an EOL mark to the end of the

string as it is saved in the file

CSC 120A - Berry College - Fall 2004 9

File IO: Step 4 (Input)

String line = inFile.readLine();
int num = Integer.parseInt(inFile.readLine());

� Exactly like reading data from the keyboard,
because we are using the same BufferedReader
class

� readLine() discards the EOL mark as it is reading a
line of characters from the file
– returns null if we’ve reached the end of file (EOF)

� We can skip over a bunch of letters in a file:
inFile.skip(100L); // L means it’s a long integer literal

� Throws an exception if we try to skip past the end
of the file
– Need to include “throws IOException” clause after

methods that use these input methods
CSC 120A - Berry College - Fall 2004 10

File IO: Step 5

inFile.close();
outFile.close();

� Breaks the association between the physical
file and the variable (inFile/outFile)

� Makes file available for use by other
programs

� Be nice: close files once you are done with
them

� A simple program using files… (UseFile.java)

CSC 120A - Berry College - Fall 2004 11

Looping

� Control structure that causes a statement or
group of statements to be executed
repeatedly

� Pattern:
while (<boolean-expression>)

<statement>
� Example:

while (count <= 25)
count = count + 1;

� Body of a loop can be single statement or a
group of statements enclosed in { … }

CSC 120A - Berry College - Fall 2004 12

Flow Charts

b? statement1

statement2

true

false

b?

statement2statement1

truefalse

statement3

if (b)
statement1;

statement2;

if (b)
statement1;

else
statement2;

statement3;

b? statement1

statement2

true

false

while (b)
statement1;

statement2;

3

CSC 120A - Berry College - Fall 2004 13

Loop Terminology

� Loop entry: point at which flow of control
reaches first statement inside a loop

� Iteration: an individual pass through, or
repetition of, the body of a loop

� Loop test: point at which while expression is
evaluated to decide whether to loop or not

� Loop exit: point at which control passes to
first statement after the loop body

� Termination condition: condition that
causes loop to be exited

CSC 120A - Berry College - Fall 2004 14

Types of Loops

� Count-controlled loop: a loop that executes a
specified number of times

� Event-controlled loop: loop that terminates
when something happens inside the body to
signal that the loop should be exited

� Making an angel food cake:
– “Beat the mixture 300 strokes” (count-controlled

loop)
– “Cut with a pastry blender until the mixture

resembles coarse meal” (event-controlled loop)

CSC 120A - Berry College - Fall 2004 15

Count-Controlled Loops

� Use a variable (loop control variable) in the test
� Before entering the loop, must initialize the loop

control variable
� In each iteration of the loop, must update (usually

increment by 1) the loop control variable

int loopCount = 1;
while (loopCount <= 10) {

…
loopCount = loopCount + 1;

}

CSC 120A - Berry College - Fall 2004 16

Example: Count-Controlled Loop

int mult = 1;
while (mult <= 10) {

System.out.println(“2 times “ + mult + “ is “ +
(2 * mult));

mult++; // same as: mult = mult + 1;
}

� Redo BinaryConv.java using a loop…
� If you forget to properly initialize or update

the loop control variable your program will
go into the famous infinite loop.

CSC 120A - Berry College - Fall 2004 17

Event-Controlled Loops

� Loops often used to read in and process long
lists of data
– Amount of data is unknown so we cannot use a

count-controlled loop
� Instead, we read/process data until some

special data value is reached, or until the
end of file

� A sentinel (or trailer) value in a file is used
as a signal that the end of data to be
processed has been reached
– E.g. In a program that reads in a calendar dates,

we may use the date February 31 as a sentinel

CSC 120A - Berry College - Fall 2004 18

Loop with a Sentinel Value

String date = inFile.readLine(); // “priming read”
while (!date.equals(“0231”)) {

…
date = inFile.readLine();

}

� Priming read: before entering the loop, we
must read the first data value

� At the end of the loop body, read in the next
data value

4

CSC 120A - Berry College - Fall 2004 19

Reading Until EOF

String line = inFile.readLine(); // “priming read”
while (line != null) {

…
line = inFile.readLine();

}

� null is a special Java constant value; think of
it as referring to a non-existent address

� null is not equivalent to an empty String “”

CSC 120A - Berry College - Fall 2004 20

Tasks Accomplished by Looping

� Counting
– Keep track of the number of times loop is

executed
� Summation

– Computing the sum of a set of data values

� Exercise: Write a program to read in integers
from a file, “temperature.txt”, compute their
average as a double value, and print the
average on the screen

� Exercises: Redo the BinaryConv and
ISBNDigit programs we wrote earlier

CSC 120A - Berry College - Fall 2004 21

From Textbook, pg. 232

…
count = 0; // Initialize event counter
sum = 0; // Initialize sum
notDone = true; // Initialize loop control flag

while (notDone) {
line = dataFile.readLine(); // Get a line
if (line != null) { // Got a line?

number = Integer.parseInt(line);// Convert line to int
if (number % 2 == 1) { // Is the int value odd?

count++; // Yes—increment counter
sum += number; // Add value to sum
notDone = (count < 10); // Update loop control flag

}
} else {

errorFile.println(“EOF reached unexpectedly.”);
notDone = false; // Update loop control flag

}
}

� Example of a flag-controlled loop

CSC 120A - Berry College - Fall 2004 22

Designing Loops

� Design flow of control
1. What condition ends the loop?
2. How should the condition be initialized?
3. How should the condition be updated?

� Design processing within loop body
4. What is the process being repeated?
5. How should the process by initialized?
6. How should the process be updated?

� Specify state upon loop exit
7. What is the state of code upon exiting the loop?

CSC 120A - Berry College - Fall 2004 23

Designing Flow of Control
� What makes the loop stop?
. Problem Statement Termination condition .
“Sum 365 temperatures” Counter reaches 365

(count-controlled loop)
“Process all data in the file” EOF occurs (EOF-controlled)
“Process until 10 odd integers have 10 odd integers read

been read” (event counter)
“The end of the data is indicated Negative value encoun-

by a negative test score” tered (sentinel-controlled)

� Initialization and update
– Count-controlled: set iteration counter to 1; increment

counter at end of each iteration
– Sentinel-controlled: open file, input initial value before

entering the loop (priming read); input next value at end of
each iteration

– Flag-controlled: set boolean flag variable; update
appropriately within the loop as condition changes CSC 120A - Berry College - Fall 2004 24

Designing Process Within the Loop

� Decide what a single iteration should do
– Count
– Sum
– Read data
– Perform calculation
– Print out something
– …

� Initialize and update variables
appropriately

5

CSC 120A - Berry College - Fall 2004 25

Loop Exit

� Check the condition of variables upon loop
exit (especially check for off-by-one errors)
lineCount = 1;
while ((inLine = inFile.readLine()) != null)

lineCount++;
System.out.println(“There are “ + lineCount +

“ lines in the file.”);
– (above code is incorrect)

CSC 120A - Berry College - Fall 2004 26

Nested Loops

� Create more complex and useful control
structures (just like if statements)
Initialize outer loop
while (Outer-loop-condition) {

...

...

}

Initialize inner loop

while (Inner-loop-condition) {
Inner loop processing

and update

}

CSC 120A - Berry College - Fall 2004 27

Example: Counting Commas in a File

� Partial program on page 236-237
– Design loops using the seven steps on slide 22
– Use the charAt(n) method of the String class,

which returns the character at a given position in
the string (“ABCDE”.charAt(0) returns ‘A’)

� Exercise: How would you implement the
MakeSpaces.spaces(n) method that we used
in lab?

public String spaces(int n) { …

CSC 120A - Berry College - Fall 2004 28

Loop Testing and Debugging

� Develop test data for loops to check all possible
scenarios
– Loop is skipped entirely
– Loop body executed exactly once
– Loop executes a normal number of times
– Loop fails to exit

� Check loop termination condition carefully
� Watch out for “off-by-one” errors
� Trace execution of loop by hand, step by step
� Use debugging output statements to isolate errors

System.out.println(“count = “ + count);
– Can be commented out later

CSC 120A - Berry College - Fall 2004 29

What’s Wrong?

� Code segment to print out the even numbers
between 1 and 15:

int n = 2;
while (n != 15) {

n = n + 2;
System.out.print(n + “ “);

}

� (2 logical errors)

CSC 120A - Berry College - Fall 2004 30

What’s Wrong II?

� Code segment to copy a line of text from one
file to another, character by character:

String line = inFile.readLine();
int count = 1;
while (count < line.length()) {

outFile.print(line.charAt(count));
count++;

}
outFile.println();

6

CSC 120A - Berry College - Fall 2004 31

Asides

� “Uninitialized variable” error
� File types and extensions

– “.txt” “.doc” “.in” “.out” “.pdf” “.ppt” “.html” etc.

� Types of input
– Interactive vs. non-interactive

� Order of statements in a program
– Physical vs. logical

� Truth tables

CSC 120A - Berry College - Fall 2004 32

Homework and Labs
� Be sure to include header comments on all program

files you write
– Name, date, course, etc.
– A description of the class or program in the file
– Design issues, assumptions you made

� Comment methods and fields appropriately
– For example, the hundreds() method of the Check program

� Check programs
– 40 is spelled “forty”☺

� Rational number data type
– String constructor: public Rational(String str) { …
– equals() method

• Comparing integers, you can use ==
• Only use the Math.abs and TOLERANCE stuff if you have to

compare double values
� Try to factor repeated blocks of code into a method

(be lazy)

