Principles of
Computer Science 1

Prof. Nadeem Abdul Hamid

CSC 120A - Fall 2004 @
Lecture Unit 14 —

%g’
=)

Review =

Final Exam

m December 6 - 10:30 AM
m Can use

- Textbook

- One (double-sided) page (8.5 x 11”) of notes
= Can’t use

- Any other materials (lecture notes/lab work/etc)
. - Computer/calculator

m Thursday lab
- Work on homework 9 problem
- Ask questions, review for final
- Course evaluations

_- CSC 120A - Berry College - Fall 2004 2

Algorithms and Computer Science
-

Limitations of Execution of

_/

- Analysis of —— Algorithms

/o \

Discovery of Representation of

Communication of

_‘ CSC 120A - Berry College - Fall 2004 3

Blind Men and the Elephant

CSC 120A - Berry College - Fall 2004 4

Designing Algorithms/Programs

m Break large tasks into smaller, easier, more
concrete subtasks (functional
decomposition)

m Build abstractions

- simplifications/elimination of irrelevant details

m Abstractions should be well-encapsulated

m Encapsulation

- How an abstract is implemented “behind-the-
scenes” should not affect other pieces of the
design that use the abstraction

- Abstraction should provide a well-defined
interface

CSC 120A - Berry College - Fall 2004 5

Object-Oriented Design Concepts

m View a task to be accomplished as a bunch
of entities (objects/agents) interacting to
solve the problem

m Programs are a collection of interacting
objects that communicate with (call methods
of/send messages to) each other

m Objects are a combination of data and
associated operations that is supported upon
that data

CSC 120A - Berry College - Fall 2004 6

Classes and Objects

m A class describes the data (fields) and operations
(methods) of its objects
- Every object belongs to some class
m An object contains data (instance variables/fields)
representing state, and instance methods, which are
the things it can do
- Class may also contain its own data (class variables/static
fields) and class methods, denoted by the keyword “static”
m Classes form an inheritance hierarchy (tree), with
Object at the root
- Every class, except Object, has exactly one immediate

superclass, which may be denoted by the keyword
“extends”

- Subclasses inherit all the (non-private) fields and methods
of superclasses (except the constructors)

CSC 120A - Berry College - Fall 2004 7

Constructors

m Class defines one or more constructors for initializing new
objects of that class

- If you don’t provide a constructor, Java provides a default
constructor with no arguments:

* sets numeric/character fields to zero, booleans to false, object
references to null

m Purpose of a constructor is to create an object in a valid state
m First thing a constructor does is call its superclass’ constructor
- If you don’t explicitly do this, using “super(...)”, then Java
implicitly invokes (calls) the default constructor of the superclass
m Constructor for a class can call another constructor for the
same class using “this(...)"” as the first statement in the
constructor
- Avoids duplicated blocks of code in constructors

CSC 120A - Berry College - Fall 2004 8

Using Objects and Casting

m Declare object variables just like other variables
- <classname> <objectvar>;
= But an object is not instantiated (allocated space
and initialized) until you create one using the
“new” keyword to call the appropriate constructor
m An object can be assigned to a variable of its own
class or any of its superclasses

- In the other direction, i.e. to assign an object to a variable
of a subclass, you have to use an explicit cast

Casting an object to a more general type is call upcasting
and is always legal

Casting an object to a more specific type is called
downcasting and Java will check at run-time if it is legal
Casting does not affect what the object is, only what fields
and methods are available on the object at the position the
cast occurs

1

CSC 120A - Berry College - Fall 2004 9

Classes and Objects (cont.)

m The “instanceof” operator tests whether an object is
an instance of a class

- Returns true if the object is the class or any subclass
thereof
- Well-designed programs rarely use this
m A Java source code file may only contain one
“public” class
- Other non-public class definitions may be included in a
single file
- Name of the file must be the same as the name of the
public class, but with a “.java” extension
m Classes should be as self-contained and
independent as possible and reasonable
- The interface (public fields and methods... made available
to other code) should be kept small
m An object is responsible for keeping itself in a valid
state at all times
- Should limit access to its important data (fields)

Access

m Fields (instance/class variables) and methods are accessed by
name
m Three dimensions to accessing name
- Namespace
- Scope
- Access modifiers
m Java has six different namespaces:
- Package names, type names, field names, method names, local
variable names (including parameters), and labels
- Identical names of different spaces do not conflict- e.g. a method
may be named the same as a local variable - but it is best to avoid
reusing names like this
m To refer to an instance feature (field/method) in a different
object, use the syntax “otherObject.name”
m To refer to a class (static) feature in a different class, use the
syntax “OtherClass.name”

CSC 120A - Berry College - Fall 2004 1"

Scope

m Scope of an identifier (name) is the part of a class/file where it
is “visible” or legal to use
- Variable declared anywhere in a class can be seen everywhere in
aclass
Scope of method’s parameters is the entire method
Scope of a variable declared in a block (indicated by braces, { })
extends from the declaration to the closing brace
Scope of a variable declared in the initialization part of a for loop
is the entire body of the loop
m Class variables and methods (indicated by “static”) can be
used anywhere within the class
m Instance variables (fields) and methods can be used anywhere
except in static methods
m Within an instance method, the keyword this refers to the
object on which the method is currently executing
- When afield and a local variable have the same name, the name
refers to the local varible; use the prefix this. to refer to the field

CSC 120A - Berry College - Fall 2004 12

Access Privileges

m public: can be accessed from anywhere

m protected: can be accessed from any other
class in the same package (folder) or from
any subclass

m package (default): can be accessed from any
other call in the same package

m private: cannot be accessed from outside the
class

- But private fields and methods can be accessed
by other objects of the same class

CSC 120A - Berry College - Fall 2004 13

Referring to Names

m Using fully qualified name:
- java.io.BufferedReader inFile = ...

m Or import a specific class or all (using *)
classes from a given package at the top of
the file and then just use the name

- import java.io.*;

BufferedReader inFile = ...

_- CSC 120A - Berry College - Fall 2004 14
Methods
o m A method is a named, executable chunk of code

- All executable statements must be in methods (one or two
exceptions, which we won’t mention here)
m Method has a signature: name and number and
types of its parameters
m Method has a return type (not part of its signature)
- If the return type is other than void, the method must
return a value of the specified type in every possible case
m Method may define local variables (scope, etc.)
- Concepts of static/public/private/etc. do not apply to local
variables
- Local variables have undefined values until they are
initialized
m Every method must have a unique signature within
a class
- Methods in other classes (including sub/superclasses) may

have the same signatures
CSC 120A - Berry College - Fall 2004 15

Executing Methods

m Executing a method means to cause its statements to
be performed upon a given object

- Also referred to as “calling a method upon an object”,
“invoking a method on an object”, “sending a
message to an object”

m Method invocation consists of
- Areference to the object (often by name) or class
- Adot
- The name of the method
- Zero or more “arguments” enclosed in parentheses
® When a method call occurs, the values of the
arguments are copied into the corresponding
parameters of the method
m Upon completion, the result of a method call
expression is its return value

CSC 120A - Berry College - Fall 2004 16

Polymorphism

m “Having many forms”

m Polymorphism in Java
- Ability to assign objects to superclass variables
- Overriding methods

m Overloading methods

- When a single class declares two or more
methods with the same name but different
signatures

- When a method call is made, the method with
the best matching signature is used (“invoked”)

CSC 120A - Berry College - Fall 2004 17

Overriding Methods

m A class declares a method with the same signature
as an inherited method
- Return type of an overridden method must be the same too
- Overriding method may not throw more exceptions than
those thrown by the overridden method
m When the method is invoked on an object (or class),
the overriding method is the one used, even if the
object is being reference through a variable of a
superclass
m Can still invoke the superclass’ version of the
method (from inside the class) using
“super.<name>(<parameters>)"

m Shadowing or hiding refers to this same
phenomenon in the context of fields
CSC 120A - Berry College - Fall 2004 18

