
1

Principles of 
Computer Science I

Prof. Nadeem Abdul Hamid
CSC 120A - Fall 2004

Lecture Unit 14
Review

CSC 120A - Berry College - Fall 2004 2

Final Exam

December 6 – 10:30 AM
Can use
– Textbook
– One (double-sided) page (8.5 x 11”) of notes

Can’t use
– Any other materials (lecture notes/lab work/etc)
– Computer/calculator

Thursday lab
– Work on homework 9 problem
– Ask questions, review for final
– Course evaluations

CSC 120A - Berry College - Fall 2004 3

Algorithms and Computer Science



2

CSC 120A - Berry College - Fall 2004 4

Blind Men and the Elephant

CSC 120A - Berry College - Fall 2004 5

Designing Algorithms/Programs

Break large tasks into smaller, easier, more 
concrete subtasks (functional 
decomposition)
Build abstractions
– simplifications/elimination of irrelevant details

Abstractions should be well-encapsulated
Encapsulation
– How an abstract is implemented “behind-the-

scenes” should not affect other pieces of the 
design that use the abstraction

– Abstraction should provide a well-defined 
interface

CSC 120A - Berry College - Fall 2004 6

Object-Oriented Design Concepts

View a task to be accomplished as a bunch 
of entities (objects/agents) interacting to 
solve the problem

Programs are a collection of interacting 
objects that communicate with (call methods 
of/send messages to) each other

Objects are a combination of data and 
associated operations that is supported upon 
that data



3

CSC 120A - Berry College - Fall 2004 7

Classes and Objects

A class describes the data (fields) and operations 
(methods) of its objects
– Every object belongs to some class

An object contains data (instance variables/fields) 
representing state, and instance methods, which are 
the things it can do
– Class may also contain its own data (class variables/static 

fields) and class methods, denoted by the keyword “static”
Classes form an inheritance hierarchy (tree), with 
Object at the root
– Every class, except Object, has exactly one immediate 

superclass, which may be denoted by the keyword 
“extends”

– Subclasses inherit all the (non-private) fields and methods 
of superclasses (except the constructors)

CSC 120A - Berry College - Fall 2004 8

Constructors

Class defines one or more constructors for initializing new 
objects of that class
– If you don’t provide a constructor, Java provides a default 

constructor with no arguments: 
• sets numeric/character fields to zero, booleans to false, object 

references to null

Purpose of a constructor is to create an object in a valid state
First thing a constructor does is call its superclass’ constructor
– If you don’t explicitly do this, using “super(…)”, then Java 

implicitly invokes (calls) the default constructor of the superclass
Constructor for a class can call another constructor for the 
same class using “this(…)” as the first statement in the 
constructor
– Avoids duplicated blocks of code in constructors

CSC 120A - Berry College - Fall 2004 9

Using Objects and Casting

Declare object variables just like other variables 
– <classname> <objectvar>;

But an object is not instantiated (allocated space 
and initialized) until you create one using the 
“new” keyword to call the appropriate constructor
An object can be assigned to a variable of its own 
class or any of its superclasses
– In the other direction, i.e. to assign an object to a variable 

of a subclass, you have to use an explicit cast
– Casting an object to a more general type is call upcasting

and is always legal
– Casting an object to a more specific type is called 

downcasting and Java will check at run-time if it is legal
– Casting does not affect what the object is, only what fields 

and methods are available on the object at the position the 
cast occurs



4

CSC 120A - Berry College - Fall 2004 10

Classes and Objects (cont.)
The “instanceof” operator tests whether an object is 
an instance of a class
– Returns true if the object is the class or any subclass 

thereof
– Well-designed programs rarely use this

A Java source code file may only contain one 
“public” class 
– Other non-public class definitions may be included in a 

single file
– Name of the file must be the same as the name of the 

public class, but with a “.java” extension
Classes should be as self-contained and 
independent as possible and reasonable
– The interface (public fields and methods… made available 

to other code) should be kept small
An object is responsible for keeping itself in a valid 
state at all times
– Should limit access to its important data (fields)

CSC 120A - Berry College - Fall 2004 11

Access

Fields (instance/class variables) and methods are accessed by 
name
Three dimensions to accessing name
– Namespace
– Scope
– Access modifiers

Java has six different namespaces:
– Package names, type names, field names, method names, local 

variable names (including parameters), and labels
– Identical names of different spaces do not conflict- e.g. a method 

may be named the same as a local variable – but it is best to avoid 
reusing names like this

To refer to an instance feature (field/method) in a different 
object, use the syntax “otherObject.name”
To refer to a class (static) feature in a different class, use the 
syntax “OtherClass.name”

CSC 120A - Berry College - Fall 2004 12

Scope

Scope of an identifier (name) is the part of a class/file where it 
is “visible” or legal to use
– Variable declared anywhere in a class can be seen everywhere in 

a class
– Scope of method’s parameters is the entire method
– Scope of a variable declared in a block (indicated by braces, { }) 

extends from the declaration to the closing brace
– Scope of a variable declared in the initialization part of a for loop 

is the entire body of the loop
Class variables and methods (indicated by “static”) can be 
used anywhere within the class
Instance variables (fields) and methods can be used anywhere 
except in static methods
Within an instance method, the keyword this refers to the 
object on which the method is currently executing
– When a field and a local variable have the same name, the name 

refers to the local varible; use the prefix this. to refer to the field



5

CSC 120A - Berry College - Fall 2004 13

Access Privileges

public: can be accessed from anywhere
protected: can be accessed from any other 
class in the same package (folder) or from 
any subclass
package (default): can be accessed from any 
other call in the same package
private: cannot be accessed from outside the 
class
– But private fields and methods can be accessed 

by other objects of the same class

CSC 120A - Berry College - Fall 2004 14

Referring to Names

Using fully qualified name:
– java.io.BufferedReader inFile = …

Or import a specific class or all (using *) 
classes from a given package at the top of 
the file and then just use the name
– import java.io.*;

…
BufferedReader inFile = …

CSC 120A - Berry College - Fall 2004 15

Methods
A method is a named, executable chunk of code
– All executable statements must be in methods (one or two 

exceptions, which we won’t mention here)
Method has a signature: name and number and 
types of its parameters
Method has a return type (not part of its signature)
– If the return type is other than void, the method must 

return a value of the specified type in every possible case
Method may define local variables (scope, etc.)
– Concepts of static/public/private/etc. do not apply to local 

variables
– Local variables have undefined values until they are 

initialized
Every method must have a unique signature within 
a class
– Methods in other classes (including sub/superclasses) may 

have the same signatures



6

CSC 120A - Berry College - Fall 2004 16

Executing Methods

Executing a method means to cause its statements to 
be performed upon a given object
– Also referred to as “calling a method upon an object”, 

“invoking a method on an object”, “sending a 
message to an object”

Method invocation consists of 
– A reference to the object (often by name) or class
– A dot
– The name of the method
– Zero or more “arguments” enclosed in parentheses

When a method call occurs, the values of the 
arguments are copied into the corresponding 
parameters of the method
Upon completion, the result of a method call 
expression is its return value

CSC 120A - Berry College - Fall 2004 17

Polymorphism

“Having many forms”
Polymorphism in Java
– Ability to assign objects to superclass variables
– Overriding methods

Overloading methods
– When a single class declares two or more 

methods with the same name but different 
signatures

– When a method call is made, the method with 
the best matching signature is used (“invoked”)

CSC 120A - Berry College - Fall 2004 18

Overriding Methods
A class declares a method with the same signature 
as an inherited method
– Return type of an overridden method must be the same too
– Overriding method may not throw more exceptions than 

those thrown by the overridden method
When the method is invoked on an object (or class), 
the overriding method is the one used, even if the 
object is being reference through a variable of a 
superclass
Can still invoke the superclass’ version of the 
method (from inside the class) using 
“super.<name>(<parameters>)”

Shadowing or hiding refers to this same 
phenomenon in the context of fields


