
1

Principles of
Computer Science II

Prof. Nadeem Abdul Hamid
CSC 121A – Spring 2005

Lecture Slides 3 -
Inheritance and Polymorphism

CSC 121A - Berry College - Spring 2005 2

Constructors in Subclasses

 The first task of any subclass constructor is to call
its direct superclass's constructor explicitly or
implicitly
– Ensures that fields inherited from the superclass are

properly initialized
– If superclass’s constructor is not explicitly invoked, Java

tries to invoke the default (no-argument) constructor
– Subclass can explicitly invoke superclass constructor

using keyword super followed by constructor arguments

 Even if constructor does not assign a value to a
field, Java initializes it to a default value (0 for
primitive numeric types, false for boolean, null for
references)

CSC 121A - Berry College - Spring 2005 3

Pet Example
public class Pet {
 String name;
 int age;

 public Pet(String name, int age) {
this.name = name;
this.age = age;
System.out.println("Invoking Pet constructor: " + name + " " + age);

 }
}

public class Cat extends Pet {

 boolean likesMilk;

 /*
 public Cat(String name, int age, boolean milk) {
 // This gives an error:
 // Pet.java: Pet(String,int) in Pet cannot be applied to ()

this.name = name;
this.age = age;
this.likesMilk = milk;

 }
 */

 public Cat(String name, int age, boolean milk) {
super(name, age); // must be first statement in constructor
likesMilk = milk;
System.out.println("Invoking Cat constructor: "

 + name + " " + age + " " + milk);
 }
}

public class PetTest {
 public static void main(String args[]) {

Cat c = new Cat("Tiger", 3, true);
 }
}

$ java PetTest
Invoking Pet constructor: Tiger 3
Invoking Cat constructor: Tiger 3 true

CSC 121A - Berry College - Spring 2005 4

The Object class

 All classes in Java inherit directly or
indirectly from Object (in java.lang package)

 Object contains 11 methods which are
inherited by all other classes
– clone: (protected method) takes no arguments

and returns an Object reference
• Makes a copy of the object on which it is called
• Default implementation makes a shallow copy;

overridden versions usually make a deep copy

– equals: compares two objects for equality and
returns a boolean; takes single Object as
argument

CSC 121A - Berry College - Spring 2005 5

The Object class (cont.)

– getClass: Returns object of class Class
containing information about the object’s type,
such as class name

– toString: returns String representation of an
object
• Default implementation returns package name and

class name of the object, followed by hexadecimal
representation of object’s address in memory

– Other methods: finalize, hashCode, notify,
notifyAll, wait

CSC 121A - Berry College - Spring 2005 6

Polymorphism
 Allows us to write code that processes

objects sharing the same superclass as if
they are all objects of that superclass

public class PolymorphismTest {
 public static void main(String args[]) {

CommissionEmployee a
 = new CommissionEmployee("Jim", 10000, 0.1);
CommissionEmployee b
 = new BasePlusCommissionEmployee3("Jane", 7000, .07, 1200);

System.out.println(a.getName() + "'s earnings: " + a.earnings());
System.out.println(b.getName() + "'s earnings: " + b.earnings());

CommissionEmployee emps[] = new CommissionEmployee[2];
emps[0] = a;
emps[1] = b;
for (int i = 0; i < emps.length; i++) {
 System.out.println(emps[i].getName() + "'s earnings: " +

emps[i].earnings());
}

 } // end method main
} // end class PolymorphismTest

2

CSC 121A - Berry College - Spring 2005 7

Abstract Classes and Methods

 So far, for any class we have defined, we can
instantiate objects of that class

 Sometimes, it is useful to declare a class which will
never be used to instantiate objects
– Such classes called abstract classes
– Used only as superclasses in inheritance hierarchies
– Abstract classes usually contain at least one abstract

method - a method without a body
– For example, Shape class in the shapes hierarchy and the

draw method

 Sample declarations:
– Abstract class: public abstract class Employee { …
– Abstract method: public abstract double earnings();

CSC 121A - Berry College - Spring 2005 8

Abstract Classes and Methods

 An abstract class declares common attributes and
behaviors of various classes in an inheritance
hierarchy

 Typically contain one or more abstract methods
that subclasses must override if the subclass is to
be concrete

 Instance variables and concrete methods of the
abstract class are inherited in the usual way

 Trying to instantiate an object from an abstract
class is a compilation error

 Not implementing a superclass’s abstract
method(s) in a subclass is a compilation error
unless the subclass is also declared abstract

CSC 121A - Berry College - Spring 2005 9

Case Study: Payroll System
A company pays its employees on a weekly basis. The employees are of
four types: (1) Salaried employees paid a fixed weekly salary regardless of
hours, (2) hourly employees paid by the hour and receiving overtime for
excess of 40 hours, (3) commission employees paid a percentage of their
sales, and (4) salaried-commission employees receiving a base salary plus
percentage of their sales. For the current pay period, the company has
decided to reward salaried-commission employees by addition 10% to
their base salaries. The company wants to implement a Java application
that performs its payroll calculations (polymorphically).

Employee

SalariedEmployee CommissionEmployee HourlyEmployee

BasePlusCommissionEmployee
CSC 121A - Berry College - Spring 2005 10

Payroll System Classes

base plus commission employee:
fullName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate
base salary: baseSalary

grossSales *

commissionRate
 + baseSalary

+
grossSales
commissionRate
baseSalary

BasePlus-

Commission-
Employee

commission employee: fullName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate

grossSales *
commissionRate+

grossSales
commissionRate

Commission-
Employee

hourly employee: fullName
social security number: SSN
hourly wage: wage
hours worked: hours

If hours <= 40
 wage * hours

If hours > 40
 40 * wage +
 (hours-40) *
 wage * 1.5

+
hourlyRate
hoursWorked

Hourly-
Employee

salaried employee: fullName
social security number: SSN
weekly salary: weeklySalary

weeklySalary
+
weeklySalary

Salaried-
Employee

fullName
social security number: SSN

abstractfullName

socialSecNumber
Employee

method
toString

method
earnings

fields

CSC 121A - Berry College - Spring 2005 11

Files

lec03/Employee.java
lec03/SalariedEmployee.java
lec03/HourlyEmployee.java
lec03/CommissionEmployee.java
lec03/BasePlusCommissionEmployee.java

CSC 121A - Berry College - Spring 2005 12

Polymorphism and Binding

 Binding: connecting a method call to a
method body

 Dynamic binding/late binding:
– Binding occurs at run-time based on the actual

class of an object

 Behavior inside constructors? …
– lec03/PolyConstructor.java

3

CSC 121A - Berry College - Spring 2005 13

Initialization Order of Objects

 Storage allocated for the object initialized
to binary zero before anything else

 Base-class constructors called as described
previously
– At this point, the overridden draw() method is

called (before the Circle constructor is called),
which discovers a radius value of zero

 Member initializers are called in the order
of declaration

 Body of the derived-class constructor is
called

CSC 121A - Berry College - Spring 2005 14

final Methods and Classes

 Variables declared final cannot be modified after
initial declaration
– i.e. they represent constant values

 Methods declared final cannot be overridden in
subclasses
– private and static methods are implicitly final

– Methods calls resolved at compile time (static/early
binding)

 Classes declared final cannot be derived from
– String class is final
– Prevents programmers from creating subclasses that

might bypass security restrictions

CSC 121A - Berry College - Spring 2005 15

Extending the Payroll Application

 Company wishes to extend payroll system
– Handle several accounting operations in one

accounts payable application
– Calculate payment due on invoices as well as

employee earnings

 Java offers capability to specify a
requirement that several unrelated classes
(Invoice, Employee) implement a set of
common methods (calculating a payment
amount)…

CSC 121A - Berry College - Spring 2005 16

Interfaces
 Only specify what operations are available- not

how they are performed
 Use the keyword interface (instead of class)

– All interface methods are implicitly public abstract
– All interface fields are implicitly public, static, final

 To use an interface, a class
– Specifies that it implements the interface
– Declares and implements methods exactly as specified in

the interface declaration
– If class does not implement all the methods of the

interface, the class must be declared abstract

 Interface used when unrelated classes need to
share common methods and constants
– Used in place of an abstract class when no default

implementations are needed

CSC 121A - Berry College - Spring 2005 17

Interface Case Study

 lec03/Payable.java
 lec03/Invoice.java
 lec03/Employee2.java
 lec03/SalariedEmployee2.java
 lec03/PayableTest.java

CSC 121A - Berry College - Spring 2005 18

Interfaces and Multiple Inheritance

 A class can only extend a single superclass
(single inheritance)

 However, a class can implement multiple
interfaces
– Simply provide a comma-separated list of

interface names after keyword implements in the
class declaration

