Principles of
Computer Science II

Prof. Nadeem Abdul Hamid

CSC 121A - Spring 2005 ‘(f /
Lecture Slides 3 - —
Inheritance and Polymorphism o5 %

Constructors in Subclasses

The first task of any subclass constructor is to call
its direct superclass's constructor explicitly or
implicitly
- Ensures that fields inherited from the superclass are
properly initialized
- If superclass’s constructor is not explicitly invoked, Java
tries to invoke the default (no-argument) constructor
- Subclass can explicitly invoke superclass constructor
using keyword super followed by constructor arguments

Even if constructor does not assign a value to a
field, Java initializes it to a default value (0 for
primitive numeric types, false for boolean, null for
references)

CSC 121A - Berry College - Spring 2005 2

public class PetTest {
public static void main(String args[]) {
Cat c = new Cat("Tiger", 3, true);

Pet Example

Y

public class Pet { 3
String name;
int age; $ java PetTest
. . . Invoking Pet constructor: Tiger 3
public Pet(String name, int age) { Invoking Cat constructor: Tiger 3 true

this.name = name;

this.age = age;
System.out.printIn("Invoking Pet constructor: " + name + " " + age);
}
1

public class Cat extends Pet {
boolean TikesMilk;

s
public Cat(String name, int age, boolean milk) {
// This gives an error:
7/ Pet.java: Pet(String,int) in Pet cannot be applied to ()
this.name = name;
this.age = age;
this. TikesMilk = milk;
}
v

public Cat(String name, int age, boolean milk) {

super(name, age); // must be first statement in constructor
TikesMilk = milk;

System.out.printin("Invoking Cat construct

+ name + " " + age +

milk);

The Object class

m All classes in Java inherit directly or
indirectly from Object (in java.lang package)

m Object contains 11 methods which are
inherited by all other classes
- clone: (protected method) takes no arguments
and returns an Object reference
* Makes a copy of the object on which it is called

* Default implementation makes a shallow copy;
overridden versions usually make a deep copy

- equals: compares two objects for equality and
returns a boolean; takes single Object as
argument

CSC 121A - Berry College - Spring 2005 4

The Object class (cont.)

- getClass: Returns object of class Class
containing information about the object’s type,
such as class name

- toString: returns String representation of an
object

¢ Default implementation returns package name and
class name of the object, followed by hexadecimal
representation of object’s address in memory

- Other methods: finalize, hashCode, notify,
notifyAll, wait

CSC 121A - Berry College - Spring 2005 5

Polymorphism

m Allows us to write code that processes
objects sharing the same superclass as if
they are all objects of that superclass

public class PolymorphismTest {
public static void main(String args[]) {
CommissionEmployee a
= new CommissionEmployee("Jim", 10000, 0.1);
CommissionEmployee b
= new BasePlusCommissionEmployee3("Jane", 7000, .07, 1200);

System.out.printIn(a.getName() + "'s earnings: " + a.earnings());
System.out.printin(b.getName() + "'s earnings: " + b.earnings());

CommissionEmployee emps[] = new CommissionEmployee[2];

emps[0] = a;
emps[1] = b;
for (int i = 0; i < emps.length; i++) {
System.out.printin(emps[i].getName() + "'s earnings: " +

emps[i].earnings());

}
} // end method main

} // end Clase Polymorph S J21A - Berry College - Spring 2005 6

est

Abstract Classes and Methods

m So far, for any class we have defined, we can
instantiate objects of that class
m Sometimes, it is useful to declare a class which will
never be used to instantiate objects
- Such classes called abstract classes
- Used only as superclasses in inheritance hierarchies

- Abstract classes usually contain at least one abstract
method - a method without a body

For example, Shape class in the shapes hierarchy and the
draw method

m Sample declarations:
- Abstract class: public abstract class Employee { ..
- Abstract method: public abstract double earningsQ;

CSC 121A - Berry College - Spring 2005 7

Abstract Classes and Methods

®m An abstract class declares common attributes and
behaviors of various classes in an inheritance
hierarchy

Typically contain one or more abstract methods
that subclasses must override if the subclass is to
be concrete

m Instance variables and concrete methods of the
abstract class are inherited in the usual way

m Trying to instantiate an object from an abstract
class is a compilation error

= Not implementing a superclass’s abstract
method(s) in a subclass is a compilation error
unless the subclass is also declared abstract

CSC 121A - Berry College - Spring 2005 8

Case Study: Payroll System

A company pays its employees on a weekly basis. The employees are of
four types: (1) Salaried employees paid a fixed weekly salary regardless of
hours, (2) hourly employees paid by the hour and receiving overtime for
excess of 40 hours, (3) commission employees paid a percentage of their
sales, and (4) salaried-commission employees receiving a base salary plus
percentage of their sales. For the current pay period, the company has
decided to reward salaried-commission employees by addition 10% to
their base salaries. The company wants to implement a Java application
that performs its payroll calculations (polymorphically).

Employee

[SalariedEmployee} {CommissionEmployee} [HourlyEmployee}

1

[BasePlusCommissionEmployee }

CSC 121A - Berry College - Spring 2005 9

Payroll System Classes

fields method method
earnings toString

Employee fullName abstract fullName

socialSecNumber social security number: SSN
Salaried- weeklySalary salaried employee: fullName
Employee |* social security number: SSN

weeklySalary weekly salary: weeklySalary
Hourly- If hours <= 40 hourly employee: fullName
Employee ;ouﬂyhm wage * hours | social security number: SSN

If hours > 40 hourly wage: wage
hourshorked 40 * wage +
o 30) hours worked: hours
(hours- *
wage * 1.5
Commission- grossSales * commission employee: fullName

Employee | * comrissfonRate | Social security number: SSNV

Z::i::::mm gross sales: grossSales

commission rate: commissionRate
BasePlus- grossSales * base plus commission employee:
Commission- | * commissionRate | fullName

grossSales + baseSalary | social security number: SSN
Employee commissionRate gross sales: grossSales

baseSalary

commission rate: commissionRate

base salary: baseSalary

Files

lec03/Employee.java
lec03/SalariedEmployee.java
lec03/HourlyEmployee.java
lec03/CommissionEmployee.java
lec03/BasePlusCommissionEmployee.java

CSC 121A - Berry College - Spring 2005 1

Polymorphism and Binding

m Binding: connecting a method call to a
method body

m Dynamic binding/late binding:
- Binding occurs at run-time based on the actual
class of an object

m Behavior inside constructors? ...

- lec03/PolyConstructor.java

CSC 121A - Berry College - Spring 2005 12

Initialization Order of Objects

m Storage allocated for the object initialized
to binary zero before anything else
m Base-class constructors called as described
previously
- At this point, the overridden draw() method is
called (before the Circle constructor is called),
which discovers a radius value of zero
m Member initializers are called in the order
of declaration
m Body of the derived-class constructor is
called

CSC 121A - Berry College - Spring 2005 13

final Methods and Classes

m Variables declared final cannot be modified after
initial declaration
- i.e. they represent constant values
m Methods declared final cannot be overridden in
subclasses
- private and static methods are implicitly final
- Methods calls resolved at compile time (static/early
binding)
m Classes declared final cannot be derived from
- String class is final

- Prevents programmers from creating subclasses that
might bypass security restrictions

CSC 121A - Berry College - Spring 2005 14

Extending the Payroll Application

m Company wishes to extend payroll system

- Handle several accounting operations in one
accounts payable application

- Calculate payment due on invoices as well as
employee earnings

m Java offers capability to specify a
requirement that several unrelated classes
(Invoice, Employee) implement a set of
common methods (calculating a payment
amount)...

CSC 121A - Berry College - Spring 2005 15

Interfaces

m Only specify what operations are available- not
how they are performed
m Use the keyword interface (instead of class)
- All interface methods are implicitly public abstract
- All interface fields are implicitly public, static, final
m To use an interface, a class
- Specifies that it imp1ements the interface

- Declares and implements methods exactly as specified in
the interface declaration

- If class does not implement all the methods of the
interface, the class must be declared abstract

m Interface used when unrelated classes need to
share common methods and constants
- Used in place of an abstract class when no default
implementations are needed

CSC 121A - Berry College - Spring 2005 16

Interface Case Study

m lec03/Payable.java

m lec03/Invoice.java

m lec03/Employee2.java

m lec03/SalariedEmployee2.java
m lec03/PayableTest.java

CSC 121A - Berry College - Spring 2005 17

Interfaces and Multiple Inheritance

m A class can only extend a single superclass
(single inheritance)

m However, a class can implement multiple
interfaces

- Simply provide a comma-separated list of
interface names after keyword implements in the
class declaration

CSC 121A - Berry College - Spring 2005 18

