
1

Principles of
Computer Science II

Prof. Nadeem Abdul Hamid
CSC 121A – Spring 2005

Lecture Slides 3 -
Inheritance and Polymorphism

CSC 121A - Berry College - Spring 2005 2

Constructors in Subclasses

 The first task of any subclass constructor is to call
its direct superclass's constructor explicitly or
implicitly
– Ensures that fields inherited from the superclass are

properly initialized
– If superclass’s constructor is not explicitly invoked, Java

tries to invoke the default (no-argument) constructor
– Subclass can explicitly invoke superclass constructor

using keyword super followed by constructor arguments

 Even if constructor does not assign a value to a
field, Java initializes it to a default value (0 for
primitive numeric types, false for boolean, null for
references)

CSC 121A - Berry College - Spring 2005 3

Pet Example
public class Pet {
 String name;
 int age;

 public Pet(String name, int age) {
this.name = name;
this.age = age;
System.out.println("Invoking Pet constructor: " + name + " " + age);

 }
}

public class Cat extends Pet {

 boolean likesMilk;

 /*
 public Cat(String name, int age, boolean milk) {
 // This gives an error:
 // Pet.java: Pet(String,int) in Pet cannot be applied to ()

this.name = name;
this.age = age;
this.likesMilk = milk;

 }
 */

 public Cat(String name, int age, boolean milk) {
super(name, age); // must be first statement in constructor
likesMilk = milk;
System.out.println("Invoking Cat constructor: "

 + name + " " + age + " " + milk);
 }
}

public class PetTest {
 public static void main(String args[]) {

Cat c = new Cat("Tiger", 3, true);
 }
}

$ java PetTest
Invoking Pet constructor: Tiger 3
Invoking Cat constructor: Tiger 3 true

CSC 121A - Berry College - Spring 2005 4

The Object class

 All classes in Java inherit directly or
indirectly from Object (in java.lang package)

 Object contains 11 methods which are
inherited by all other classes
– clone: (protected method) takes no arguments

and returns an Object reference
• Makes a copy of the object on which it is called
• Default implementation makes a shallow copy;

overridden versions usually make a deep copy

– equals: compares two objects for equality and
returns a boolean; takes single Object as
argument

CSC 121A - Berry College - Spring 2005 5

The Object class (cont.)

– getClass: Returns object of class Class
containing information about the object’s type,
such as class name

– toString: returns String representation of an
object
• Default implementation returns package name and

class name of the object, followed by hexadecimal
representation of object’s address in memory

– Other methods: finalize, hashCode, notify,
notifyAll, wait

CSC 121A - Berry College - Spring 2005 6

Polymorphism
 Allows us to write code that processes

objects sharing the same superclass as if
they are all objects of that superclass

public class PolymorphismTest {
 public static void main(String args[]) {

CommissionEmployee a
 = new CommissionEmployee("Jim", 10000, 0.1);
CommissionEmployee b
 = new BasePlusCommissionEmployee3("Jane", 7000, .07, 1200);

System.out.println(a.getName() + "'s earnings: " + a.earnings());
System.out.println(b.getName() + "'s earnings: " + b.earnings());

CommissionEmployee emps[] = new CommissionEmployee[2];
emps[0] = a;
emps[1] = b;
for (int i = 0; i < emps.length; i++) {
 System.out.println(emps[i].getName() + "'s earnings: " +

emps[i].earnings());
}

 } // end method main
} // end class PolymorphismTest

2

CSC 121A - Berry College - Spring 2005 7

Abstract Classes and Methods

 So far, for any class we have defined, we can
instantiate objects of that class

 Sometimes, it is useful to declare a class which will
never be used to instantiate objects
– Such classes called abstract classes
– Used only as superclasses in inheritance hierarchies
– Abstract classes usually contain at least one abstract

method - a method without a body
– For example, Shape class in the shapes hierarchy and the

draw method

 Sample declarations:
– Abstract class: public abstract class Employee { …
– Abstract method: public abstract double earnings();

CSC 121A - Berry College - Spring 2005 8

Abstract Classes and Methods

 An abstract class declares common attributes and
behaviors of various classes in an inheritance
hierarchy

 Typically contain one or more abstract methods
that subclasses must override if the subclass is to
be concrete

 Instance variables and concrete methods of the
abstract class are inherited in the usual way

 Trying to instantiate an object from an abstract
class is a compilation error

 Not implementing a superclass’s abstract
method(s) in a subclass is a compilation error
unless the subclass is also declared abstract

CSC 121A - Berry College - Spring 2005 9

Case Study: Payroll System
A company pays its employees on a weekly basis. The employees are of
four types: (1) Salaried employees paid a fixed weekly salary regardless of
hours, (2) hourly employees paid by the hour and receiving overtime for
excess of 40 hours, (3) commission employees paid a percentage of their
sales, and (4) salaried-commission employees receiving a base salary plus
percentage of their sales. For the current pay period, the company has
decided to reward salaried-commission employees by addition 10% to
their base salaries. The company wants to implement a Java application
that performs its payroll calculations (polymorphically).

Employee

SalariedEmployee CommissionEmployee HourlyEmployee

BasePlusCommissionEmployee
CSC 121A - Berry College - Spring 2005 10

Payroll System Classes

base plus commission employee:
fullName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate
base salary: baseSalary

grossSales *

commissionRate
 + baseSalary

+
grossSales
commissionRate
baseSalary

BasePlus-

Commission-
Employee

commission employee: fullName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate

grossSales *
commissionRate+

grossSales
commissionRate

Commission-
Employee

hourly employee: fullName
social security number: SSN
hourly wage: wage
hours worked: hours

If hours <= 40
 wage * hours

If hours > 40
 40 * wage +
 (hours-40) *
 wage * 1.5

+
hourlyRate
hoursWorked

Hourly-
Employee

salaried employee: fullName
social security number: SSN
weekly salary: weeklySalary

weeklySalary
+
weeklySalary

Salaried-
Employee

fullName
social security number: SSN

abstractfullName

socialSecNumber
Employee

method
toString

method
earnings

fields

CSC 121A - Berry College - Spring 2005 11

Files

lec03/Employee.java
lec03/SalariedEmployee.java
lec03/HourlyEmployee.java
lec03/CommissionEmployee.java
lec03/BasePlusCommissionEmployee.java

CSC 121A - Berry College - Spring 2005 12

Polymorphism and Binding

 Binding: connecting a method call to a
method body

 Dynamic binding/late binding:
– Binding occurs at run-time based on the actual

class of an object

 Behavior inside constructors? …
– lec03/PolyConstructor.java

3

CSC 121A - Berry College - Spring 2005 13

Initialization Order of Objects

 Storage allocated for the object initialized
to binary zero before anything else

 Base-class constructors called as described
previously
– At this point, the overridden draw() method is

called (before the Circle constructor is called),
which discovers a radius value of zero

 Member initializers are called in the order
of declaration

 Body of the derived-class constructor is
called

CSC 121A - Berry College - Spring 2005 14

final Methods and Classes

 Variables declared final cannot be modified after
initial declaration
– i.e. they represent constant values

 Methods declared final cannot be overridden in
subclasses
– private and static methods are implicitly final

– Methods calls resolved at compile time (static/early
binding)

 Classes declared final cannot be derived from
– String class is final
– Prevents programmers from creating subclasses that

might bypass security restrictions

CSC 121A - Berry College - Spring 2005 15

Extending the Payroll Application

 Company wishes to extend payroll system
– Handle several accounting operations in one

accounts payable application
– Calculate payment due on invoices as well as

employee earnings

 Java offers capability to specify a
requirement that several unrelated classes
(Invoice, Employee) implement a set of
common methods (calculating a payment
amount)…

CSC 121A - Berry College - Spring 2005 16

Interfaces
 Only specify what operations are available- not

how they are performed
 Use the keyword interface (instead of class)

– All interface methods are implicitly public abstract
– All interface fields are implicitly public, static, final

 To use an interface, a class
– Specifies that it implements the interface
– Declares and implements methods exactly as specified in

the interface declaration
– If class does not implement all the methods of the

interface, the class must be declared abstract

 Interface used when unrelated classes need to
share common methods and constants
– Used in place of an abstract class when no default

implementations are needed

CSC 121A - Berry College - Spring 2005 17

Interface Case Study

 lec03/Payable.java
 lec03/Invoice.java
 lec03/Employee2.java
 lec03/SalariedEmployee2.java
 lec03/PayableTest.java

CSC 121A - Berry College - Spring 2005 18

Interfaces and Multiple Inheritance

 A class can only extend a single superclass
(single inheritance)

 However, a class can implement multiple
interfaces
– Simply provide a comma-separated list of

interface names after keyword implements in the
class declaration

