
1

Principles of Computer Science II
Nadeem Abdul Hamid

CSC121A - Spring 2005

Lecture Slides 8 - Computer Science
& the C Programming Language

2

Elements of Computer Science

Mathematics
• Use formal languages to denote ideas

Engineering
• Design
• Assemble components into systems
• Evaluate tradeoffs among alternates

Natural Science
• Observe behavior of complex systems
• Form hypotheses
• Test predictions

Portions of this lecture from How to Think Like a Computer Scientist by Allen B. Downey

3

Problem-Solving

Single most important skill
• Ability to formulate problems
• Think creatively about solutions
• Express a solution clearly and accurately

Learning to program = Developing
problem-solving skills

4

C Programming Language

C: Intermediate-level language
• Java: high-level
• Assembly/machine language: low-level
• Loosely, computer only execute low-level code
• High-level programs must be translated to low-

level before they are run

5

High-Level Languages

Disadvantage
• Must be translated before can be run (takes

time)
Advantages

• Much easier to program
• Less time to write
• Shorter/easier to read
• More likely to be correct

• Portable
• Can run on different kinds of computers with

little/no modification 6

“Translating” a Program

 Interpreter
• Program that reads a high-level program statement by

statement and does what it says

Compiler
• Program that reads a high-level program and translates

to machine code all at once before running it

Source
code Interpreter

<display>

2

7

Compiler
Using a compiler

• Use text editor to write program, hello.c (save
to disk)

• Compile program to object, hello.o or
executable, hello.exe (save to disk)

• Run program (executor loads program from
disk into memory and makes computer start
executing program)

Source
code Compiler

<display>

Object
code Executor

8

What is a Program?
A sequence of instructions specifying how to

perform a computation
A concrete implementation of an algorithm for a

computer
Basic functions of any language

• Input
• Output
• Math
• Testing (Selection/Branching)
• Repetition (Looping/Iteration)
• (Subroutines)

 Programming: Process of breaking a large,
complex task into smaller and smaller subtasks
until they can be performed by basic functions

9

Debugging

Bugs: program errors
Tracking them down and correcting them:

debugging
Types of errors

• Compile-time (mostly syntactic)
• Run-time
• Logic/Semantic

To err is human;
To really screw things up takes a computer.

10

Syntactic Errors

Compiler can only translate a syntactically-
correct program

 Syntax: structure of the program and rules about
that structure
• English syntax: Sentence must begin with a capital

letter and end with period
• this sentence contains a syntax error.
• So does this one

We can process syntax errors without spewing
error messages; compilers aren’t like that

More syntax rules in C than English?

11

Logic/Semantic Errors

Program compiles, may even run to
completion without generating error
messages

Program does not do what you mean it to do
Program you wrote is not the program you

wanted to write
• The meaning of the program (its semantics) are

wrong

12

Developing and Debugging
Though frustrating, debugging is one of most

intellectual, challenging, interesting parts of
programming

Like detective work…
Like experimental science…

• Figure out what’s wrong, make a change, try it out
Developing a program should be an incremental

process
• Start with working program that does something
• Make small modifications, compiling & debugging as

you go… always have a working program
• Linux started as a simple program of Linus Torvalds to

explore the Intel 80386 chip
• An early project: A program to switch between printing

AAAA and BBBB… later evolved to Linux OS

3

13

Languages
Natural: languages people speak… evolved

naturally, not designed persay
 Formal: languages designed by people for

specific applications
• Mathematical notation
• Chemical notation
• Programming languages: formal languages designed to

express computations
 Figuring out tokens and structure: parsing (we do

this unconsciously for English)
After parsing, we figure out the meaning

(semantics) 14

Natural and Formal Languages

 Similarities: Basic concepts of tokens, structure,
syntax, and semantics

Differences
• Ambiguity
• Redundancy
• Literalness

 Formal languages much more dense and concise
• Structure is very important… reading top to bottom,

left to right doesn’t always work
• Details matter! More picky than an English teacher

about spelling errors and punctuation

15

First C Program
/* The traditional first program in honor of
 Dennis Ritchie, who invented C while
 at Bell Labs in 1972. */

#include <stdio.h>

int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

Comments in C enclosed in /*
… */
(// form is not in ANSI C)

#… : preprocessing directive
 This one causes a copy of
the standard header file for
input/output to be included at
this point in the code
 <…> (angle brackets)
indicate file is to be found in
the “usual place”
 In this case, we need the
information about the printf
function

Every program has a function named main.
Parentheses after name indicate to the compiler
that it is a function. Keyword int declares
return type. Keyword void indicates that it
takes no arguments
Here the printf (print-formatted) function is
being called, or invoked, with a single argument
- a string constant (C functions are similar to
Java methods)

16

C Compiler for Windows/DOS

 http://www.delorie.com/djgpp/
• Zip Picker

• Basic functionality: “Build and run programs with DJGPP”
• Programming language: “C”
• Integrated Development Env. and Tools: “None”

• Downloads a bunch of ZIP files - uncompress to
C:\DJGPP directory

• Set up path and other environment variables as:
• http://www.delorie.com/djgpp/doc/ug/intro/installing-

djgpp.html
Can use SciTE text editor to edit
Use command window (terminal) to compile

and run programs

17

Variables, Expressions,
Assignments #include <stdio.h>

int main(void)
{
 int inches, feet, fathoms;

 fathoms = 7;
 feet = 6 * fathoms;
 inches = 12 * feet;
 printf("Wreck of the Hesperus:\n");
 printf("Its depth at sea in different units:\n");
 printf(" %d fathoms\n", fathoms);
 printf(" %d feet\n", feet);
 printf(" %d inches\n", inches);
 return 0;
}

Variable declarations

First argument to printf is always a string,
called the control string.

%d is a ‘conversion specification’ or format. In
this case, it specifies that the second argument,
fathoms, should be printed in the format of a
decimal integer.

Assignment statements

18

Simple Layout of C Program

preprocessing directives

int main(void)
{
 declarations

 statements
}

What kind of data can be stored
in each variable. Compiler sets
aside appropriate amount of
memory for it.

Carry out input, output, and
desired computations

4

19

Program Elements

Variables: referred to by an identifier (i.e. a name)
• Identifier consists of letters, digits, underscore; cannot

begin with digit
• Should be named to reflect use in the program
• After being declared, can be assigned values and used

in expressions

Keywords, also called reserved words
• Cannot be used as the names of variables
• Will be presented in Chapter 2

20

Program Elements
Expressions

• Typically found (1) to the right of assignment operators or (2)
as arguments to functions

• Constants… 6 12
• Name of a variable alone
• Meaningful combinations of operators with variables

and constants (or other expressions)
• Basic arithmetic operators: + - * / %

Assignment statements
• Variable on left side, equal sign =, expression on right
• Expression can be simple or complex and contain

function calls
• Constants and most expressions not allowed on left of =

21

Characters

Variables and constants of type char are
used to manipulate characters

Constants written within single quotes
Printf format: %c

#include <stdio.h>

int main(void)
{
 char c;
 c = 'A';
 printf("%c\n", c); /* the letter A is printed */
 return 0;
}

22

Floating Point Types

Three types in ANSI C:
• float, double, long double

Working floating type in C is double
• 1.065 0.004 7.0

 Float constants specified with F suffix
• 1.065F 0.004F

 Long double specified with L suffix
 Printf format: %f (float number with 6 digits to

the right of decimal point)
Modulus operator % works only with integers

23

Initialization

Variables may be initialized when declared

int fathoms = 7, feet = 6 * fathoms, inches = 12 * feet;

Variables cannot be used before they are
declared

24

Preprocessing Directives

When C compiler is invoked, the first thing that
executes is the preprocessor

 Preprocessor modifies the source code that is
passed to the compiler
• Contents of other files may be copied in
• Specified character strings replaced with others

Lines beginning with # give commands to the
preprocessor and are called preprocessing
directives
• Can occur anywhere in a program
• Affects only those lines coming after the directive

5

25

#define and #include
#include <filename>

 Preprocessor looks for filename in standard directories (in
Unix, typically /usr/include)

#include "filename"

 Preprocessor looks in current directory and then other
directories (usually in the path)

#define LIMIT 100
#define PI 3.14159

 Preprocessor changes all occurrences of LIMIT to 100 and
PI to 3.14159 (other than things in string constants)

printf("PI = %f\n", PI); printf("PI = %f\n", 3.14159);

 #define’d things are called symbolic constants 26

Using printf
printf("Get set: = %s %d %f %c%c\n",

 "one", 2, 3.33, 'G', 'O');

… prints out:
Get set: one 2 3.330000 GO

Conversion characters:
• c - character
• d - decimal integer
• e - f.p. in scientific notation
• f - f.p. number
• g - the shorter of the e or f format
• s - string

27

Field Width and Precision

Field: The place where an argument is
printed

To control field width, specify integer
between the % and conversion character

printf("%c%3c%7c\n", 'A', 'B', 'C');

For floating point, the precision (# of digits
after the point) specified by n in %m.nf

printf("%s%.1f %.2f %.3f\n%s%7.1f%7.2f%7.3f\n",
 "Some numbers: ", 1.0, 2.0, 3.0,
 "More numbers:", 4.0, 5.0, 6.0);

28

Input with scanf

Analogous to printf
• First argument is control string specifying expected

input types
• Following arguments are addresses of variables in

which to store input values
• Address: place in memory at which a variable’s data is

stored
• Symbol & represents the address operator

int x;
...
scanf("%d", &x);

29

scanf Conversion Characters

• c - character
• d - decimal integer
• f - floating-point number (float)
• lf - floating-point number (double)
• Lf - floating-point number (long double)
• s - string

30

Sample Program with Input
#include <stdio.h>

int main(void)
{
 char first, middle, last;
 int age;

 printf("Input your three initials and your age: ");
 scanf("%c%c%c%d", &first, &middle, &last, &age);
 printf("\nGreetings %c.%c.%c. %s %d.\n", first,
 middle, last, "Next year your age will be", age + 1);
 return 0;
}

Note: This program does not skip
whitespace upon input

6

31

Area of a Circle
#include <stdio.h>

#define PI 3.141592653589793

int main(void)
{
 double radius;

 printf("\n%s\n\n%s",
 "This program computes the area of a circle.",
 "Input the radius: ");
 scanf("%lf", &radius);
 printf("\n%s\n%s%.2f%s%.2f%s%.2f\n%s%.5f\n\n",
 "Area = PI * radius * radius",
 " = ", PI, " * ", radius, " * ", radius,
 " = ", PI * radius * radius);
 return 0;
}

Symbolic constant

Notice %lf and %f formats

32

Return Values printf, scanf

 printf: number of characters printed
scanf: number of successful conversions

• 0 if none - usually due to invalid input
character (alphabetic character when number
expected)

• -1 (EOF) - if input failure, such as end-of-file,
occurs before any conversion

33

while Statement
/* Sums are computed. */

#include <stdio.h>

int main(void)
{
 int cnt = 0;
 float sum = 0.0, x;

 printf("The sum of your numbers"
 " will be computed\n\n");
 printf("Input some numbers: ");
 while (scanf("%f", &x) == 1) {
 cnt = cnt + 1;
 sum = sum + x;
 }
 printf("\n%s%5d\n%s%12f\n\n",
 "Count:", cnt,
 " Sum:", sum);
 return 0;
}

Testing the return value of scanf -
we expect exactly one successful
input conversion to take place

To end loop, must type a non-
number or else type an “end-of-
file” signal.

UNIX eof: <return> followed by
<ctrl>+<d> key
Windows/DOS eof: <ctrl>+<z>

(Try inputs: 1.1 2.02 3.003 4.0004 5.00005)
34

Programming Style

Good coding style essential for facilitating
• Readability,
• Writability, and
• Maintenance of program code.

Use white space and comments to make code
easier to read and understand, and visually
attractive

Use consistent indentation (you know that
already…)

35

Common Programming Errors

Easy to become confused about error messages
 Simple syntax… ; , “ ‘ (), misspelling, etc.
Be sure to use %lf with scanf when reading in a

double value (with printf you can use %f)
 In printf format of %m.nf, the m specifies total

field width, not the number of decimal digits to
the left
• For two digits to the left and three to the right:use
%6.3f and not %2.3

 !!! Don’t forget the address operator & when using
scanf !!!

36

System Issues

Interrupting a program: use <ctrl> + <c> or
<ctrl> + <break>

Typing ‘End-of-File’ signal
• Unix: type return and then <ctrl> + <d>
• Windows/DOS: <ctrl> + <z>

7

37

Redirection of Input/Output

Many OSs allow you to redirect the
standard input (usually connected to
keyboard) and standard output (usually
connected to the screen)

By default, printf writes to standard output
 scanf reads from standard input
Use > symbol to redirect output
Use < symbol to redirect input

38

Double Echo Program
#include <stdio.h>

int main(void)
{
 char c;

 while (scanf("%c", &c) == 1) {
 printf("%c", c);
 printf("%c", c);
 }
 return 0;
}

/* Four ways to run this program:

 dbl_out
 dbl_out < infile
 dbl_out > outfile
 dbl_out < infile > outfile

*/

