
1

Principles of Computer Science II
Nadeem Abdul Hamid

CSC121A - Spring 2005

Lecture Slides 8 - Computer Science
& the C Programming Language

2

Elements of Computer Science

Mathematics
• Use formal languages to denote ideas

Engineering
• Design
• Assemble components into systems
• Evaluate tradeoffs among alternates

Natural Science
• Observe behavior of complex systems
• Form hypotheses
• Test predictions

Portions of this lecture from How to Think Like a Computer Scientist by Allen B. Downey

3

Problem-Solving

Single most important skill
• Ability to formulate problems
• Think creatively about solutions
• Express a solution clearly and accurately

Learning to program = Developing
problem-solving skills

4

C Programming Language

C: Intermediate-level language
• Java: high-level
• Assembly/machine language: low-level
• Loosely, computer only execute low-level code
• High-level programs must be translated to low-

level before they are run

5

High-Level Languages

Disadvantage
• Must be translated before can be run (takes

time)
Advantages

• Much easier to program
• Less time to write
• Shorter/easier to read
• More likely to be correct

• Portable
• Can run on different kinds of computers with

little/no modification 6

“Translating” a Program

 Interpreter
• Program that reads a high-level program statement by

statement and does what it says

Compiler
• Program that reads a high-level program and translates

to machine code all at once before running it

Source
code Interpreter

<display>

2

7

Compiler
Using a compiler

• Use text editor to write program, hello.c (save
to disk)

• Compile program to object, hello.o or
executable, hello.exe (save to disk)

• Run program (executor loads program from
disk into memory and makes computer start
executing program)

Source
code Compiler

<display>

Object
code Executor

8

What is a Program?
A sequence of instructions specifying how to

perform a computation
A concrete implementation of an algorithm for a

computer
Basic functions of any language

• Input
• Output
• Math
• Testing (Selection/Branching)
• Repetition (Looping/Iteration)
• (Subroutines)

 Programming: Process of breaking a large,
complex task into smaller and smaller subtasks
until they can be performed by basic functions

9

Debugging

Bugs: program errors
Tracking them down and correcting them:

debugging
Types of errors

• Compile-time (mostly syntactic)
• Run-time
• Logic/Semantic

To err is human;
To really screw things up takes a computer.

10

Syntactic Errors

Compiler can only translate a syntactically-
correct program

 Syntax: structure of the program and rules about
that structure
• English syntax: Sentence must begin with a capital

letter and end with period
• this sentence contains a syntax error.
• So does this one

We can process syntax errors without spewing
error messages; compilers aren’t like that

More syntax rules in C than English?

11

Logic/Semantic Errors

Program compiles, may even run to
completion without generating error
messages

Program does not do what you mean it to do
Program you wrote is not the program you

wanted to write
• The meaning of the program (its semantics) are

wrong

12

Developing and Debugging
Though frustrating, debugging is one of most

intellectual, challenging, interesting parts of
programming

Like detective work…
Like experimental science…

• Figure out what’s wrong, make a change, try it out
Developing a program should be an incremental

process
• Start with working program that does something
• Make small modifications, compiling & debugging as

you go… always have a working program
• Linux started as a simple program of Linus Torvalds to

explore the Intel 80386 chip
• An early project: A program to switch between printing

AAAA and BBBB… later evolved to Linux OS

3

13

Languages
Natural: languages people speak… evolved

naturally, not designed persay
 Formal: languages designed by people for

specific applications
• Mathematical notation
• Chemical notation
• Programming languages: formal languages designed to

express computations
 Figuring out tokens and structure: parsing (we do

this unconsciously for English)
After parsing, we figure out the meaning

(semantics) 14

Natural and Formal Languages

 Similarities: Basic concepts of tokens, structure,
syntax, and semantics

Differences
• Ambiguity
• Redundancy
• Literalness

 Formal languages much more dense and concise
• Structure is very important… reading top to bottom,

left to right doesn’t always work
• Details matter! More picky than an English teacher

about spelling errors and punctuation

15

First C Program
/* The traditional first program in honor of
 Dennis Ritchie, who invented C while
 at Bell Labs in 1972. */

#include <stdio.h>

int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

Comments in C enclosed in /*
… */
(// form is not in ANSI C)

#… : preprocessing directive
 This one causes a copy of
the standard header file for
input/output to be included at
this point in the code
 <…> (angle brackets)
indicate file is to be found in
the “usual place”
 In this case, we need the
information about the printf
function

Every program has a function named main.
Parentheses after name indicate to the compiler
that it is a function. Keyword int declares
return type. Keyword void indicates that it
takes no arguments
Here the printf (print-formatted) function is
being called, or invoked, with a single argument
- a string constant (C functions are similar to
Java methods)

16

C Compiler for Windows/DOS

 http://www.delorie.com/djgpp/
• Zip Picker

• Basic functionality: “Build and run programs with DJGPP”
• Programming language: “C”
• Integrated Development Env. and Tools: “None”

• Downloads a bunch of ZIP files - uncompress to
C:\DJGPP directory

• Set up path and other environment variables as:
• http://www.delorie.com/djgpp/doc/ug/intro/installing-

djgpp.html
Can use SciTE text editor to edit
Use command window (terminal) to compile

and run programs

17

Variables, Expressions,
Assignments #include <stdio.h>

int main(void)
{
 int inches, feet, fathoms;

 fathoms = 7;
 feet = 6 * fathoms;
 inches = 12 * feet;
 printf("Wreck of the Hesperus:\n");
 printf("Its depth at sea in different units:\n");
 printf(" %d fathoms\n", fathoms);
 printf(" %d feet\n", feet);
 printf(" %d inches\n", inches);
 return 0;
}

Variable declarations

First argument to printf is always a string,
called the control string.

%d is a ‘conversion specification’ or format. In
this case, it specifies that the second argument,
fathoms, should be printed in the format of a
decimal integer.

Assignment statements

18

Simple Layout of C Program

preprocessing directives

int main(void)
{
 declarations

 statements
}

What kind of data can be stored
in each variable. Compiler sets
aside appropriate amount of
memory for it.

Carry out input, output, and
desired computations

4

19

Program Elements

Variables: referred to by an identifier (i.e. a name)
• Identifier consists of letters, digits, underscore; cannot

begin with digit
• Should be named to reflect use in the program
• After being declared, can be assigned values and used

in expressions

Keywords, also called reserved words
• Cannot be used as the names of variables
• Will be presented in Chapter 2

20

Program Elements
Expressions

• Typically found (1) to the right of assignment operators or (2)
as arguments to functions

• Constants… 6 12
• Name of a variable alone
• Meaningful combinations of operators with variables

and constants (or other expressions)
• Basic arithmetic operators: + - * / %

Assignment statements
• Variable on left side, equal sign =, expression on right
• Expression can be simple or complex and contain

function calls
• Constants and most expressions not allowed on left of =

21

Characters

Variables and constants of type char are
used to manipulate characters

Constants written within single quotes
Printf format: %c

#include <stdio.h>

int main(void)
{
 char c;
 c = 'A';
 printf("%c\n", c); /* the letter A is printed */
 return 0;
}

22

Floating Point Types

Three types in ANSI C:
• float, double, long double

Working floating type in C is double
• 1.065 0.004 7.0

 Float constants specified with F suffix
• 1.065F 0.004F

 Long double specified with L suffix
 Printf format: %f (float number with 6 digits to

the right of decimal point)
Modulus operator % works only with integers

23

Initialization

Variables may be initialized when declared

int fathoms = 7, feet = 6 * fathoms, inches = 12 * feet;

Variables cannot be used before they are
declared

24

Preprocessing Directives

When C compiler is invoked, the first thing that
executes is the preprocessor

 Preprocessor modifies the source code that is
passed to the compiler
• Contents of other files may be copied in
• Specified character strings replaced with others

Lines beginning with # give commands to the
preprocessor and are called preprocessing
directives
• Can occur anywhere in a program
• Affects only those lines coming after the directive

5

25

#define and #include
#include <filename>

 Preprocessor looks for filename in standard directories (in
Unix, typically /usr/include)

#include "filename"

 Preprocessor looks in current directory and then other
directories (usually in the path)

#define LIMIT 100
#define PI 3.14159

 Preprocessor changes all occurrences of LIMIT to 100 and
PI to 3.14159 (other than things in string constants)

printf("PI = %f\n", PI);  printf("PI = %f\n", 3.14159);

 #define’d things are called symbolic constants 26

Using printf
printf("Get set: = %s %d %f %c%c\n",

 "one", 2, 3.33, 'G', 'O');

… prints out:
Get set: one 2 3.330000 GO

Conversion characters:
• c - character
• d - decimal integer
• e - f.p. in scientific notation
• f - f.p. number
• g - the shorter of the e or f format
• s - string

27

Field Width and Precision

Field: The place where an argument is
printed

To control field width, specify integer
between the % and conversion character

printf("%c%3c%7c\n", 'A', 'B', 'C');

For floating point, the precision (# of digits
after the point) specified by n in %m.nf

printf("%s%.1f %.2f %.3f\n%s%7.1f%7.2f%7.3f\n",
 "Some numbers: ", 1.0, 2.0, 3.0,
 "More numbers:", 4.0, 5.0, 6.0);

28

Input with scanf

Analogous to printf
• First argument is control string specifying expected

input types
• Following arguments are addresses of variables in

which to store input values
• Address: place in memory at which a variable’s data is

stored
• Symbol & represents the address operator

int x;
...
scanf("%d", &x);

29

scanf Conversion Characters

• c - character
• d - decimal integer
• f - floating-point number (float)
• lf - floating-point number (double)
• Lf - floating-point number (long double)
• s - string

30

Sample Program with Input
#include <stdio.h>

int main(void)
{
 char first, middle, last;
 int age;

 printf("Input your three initials and your age: ");
 scanf("%c%c%c%d", &first, &middle, &last, &age);
 printf("\nGreetings %c.%c.%c. %s %d.\n", first,
 middle, last, "Next year your age will be", age + 1);
 return 0;
}

Note: This program does not skip
whitespace upon input

6

31

Area of a Circle
#include <stdio.h>

#define PI 3.141592653589793

int main(void)
{
 double radius;

 printf("\n%s\n\n%s",
 "This program computes the area of a circle.",
 "Input the radius: ");
 scanf("%lf", &radius);
 printf("\n%s\n%s%.2f%s%.2f%s%.2f\n%s%.5f\n\n",
 "Area = PI * radius * radius",
 " = ", PI, " * ", radius, " * ", radius,
 " = ", PI * radius * radius);
 return 0;
}

Symbolic constant

Notice %lf and %f formats

32

Return Values printf, scanf

 printf: number of characters printed
scanf: number of successful conversions

• 0 if none - usually due to invalid input
character (alphabetic character when number
expected)

• -1 (EOF) - if input failure, such as end-of-file,
occurs before any conversion

33

while Statement
/* Sums are computed. */

#include <stdio.h>

int main(void)
{
 int cnt = 0;
 float sum = 0.0, x;

 printf("The sum of your numbers"
 " will be computed\n\n");
 printf("Input some numbers: ");
 while (scanf("%f", &x) == 1) {
 cnt = cnt + 1;
 sum = sum + x;
 }
 printf("\n%s%5d\n%s%12f\n\n",
 "Count:", cnt,
 " Sum:", sum);
 return 0;
}

Testing the return value of scanf -
we expect exactly one successful
input conversion to take place

To end loop, must type a non-
number or else type an “end-of-
file” signal.

UNIX eof: <return> followed by
<ctrl>+<d> key
Windows/DOS eof: <ctrl>+<z>

(Try inputs: 1.1 2.02 3.003 4.0004 5.00005)
34

Programming Style

Good coding style essential for facilitating
• Readability,
• Writability, and
• Maintenance of program code.

Use white space and comments to make code
easier to read and understand, and visually
attractive

Use consistent indentation (you know that
already…)

35

Common Programming Errors

Easy to become confused about error messages
 Simple syntax… ; , “ ‘ (), misspelling, etc.
Be sure to use %lf with scanf when reading in a

double value (with printf you can use %f)
 In printf format of %m.nf, the m specifies total

field width, not the number of decimal digits to
the left
• For two digits to the left and three to the right:use
%6.3f and not %2.3

 !!! Don’t forget the address operator & when using
scanf !!!

36

System Issues

Interrupting a program: use <ctrl> + <c> or
<ctrl> + <break>

Typing ‘End-of-File’ signal
• Unix: type return and then <ctrl> + <d>
• Windows/DOS: <ctrl> + <z>

7

37

Redirection of Input/Output

Many OSs allow you to redirect the
standard input (usually connected to
keyboard) and standard output (usually
connected to the screen)

By default, printf writes to standard output
 scanf reads from standard input
Use > symbol to redirect output
Use < symbol to redirect input

38

Double Echo Program
#include <stdio.h>

int main(void)
{
 char c;

 while (scanf("%c", &c) == 1) {
 printf("%c", c);
 printf("%c", c);
 }
 return 0;
}

/* Four ways to run this program:

 dbl_out
 dbl_out < infile
 dbl_out > outfile
 dbl_out < infile > outfile

*/

