
1

Principles of Computer Science II
Nadeem Abdul Hamid

CSC121A - Spring 2005

Lecture Slides 9 - Lexical Elements,
Operators, and the C System

2

Review

Writing a simple C program with a main
function

Basic C types and values
Variable declarations and assignment
Input/output with scanf/printf

3

Lexical Elements
 (Programming) Languages have an alphabet and rules for

putting together words and punctuation to form correct, or
legal, programs

 These rules are the syntax
 Compiler goes through several stages

• First preprocessor is invoked (as separate program, or integrated
into compiler)

• Compiler collects characters of the program to form tokens
(words/basic vocabulary)

• Compiler checks that the tokens are arranged into legal statements
according to the syntax of the language (parsing)

• Converts the program into object code and final executable code
to run on a particular machine

4

Lexical Elements

Characters recognized by C compiler
• Uppercase/lowercase letters, digits,

+-*/=(){}[]<>'"!@#$%&_|^-\.,;:?,
whitespace (blank, newline, tab)

Characters are collected into tokens
(separated by whitespace)
• Keywords, identifiers, constants, string

constants, operators, punctuators

5

Sum
Program /* Read in two integers and print their sum. */

#include <stdio.h>

int main(void)
{
 int a, b, sum;

 printf("Input two integers: ");
 scanf("%d%d", &a, &b);
 sum = a + b;
 printf("%d + %d = %d\n", a, b, sum);
 return 0;
}

Compiler replaces comments with a single blank

Preprocessing directive: causes
stdio.h to be included - contains
function prototypes for printf
and scanf

 Identifiers
• main a b sum

printf scanf
 Keywords

• int return void
 Operators

• () + & =
 Punctuators

• { } , ;
 Constants

• 0
 String constants

• "Input two integers: "
• "%d%d"
• "%d + %d = %d\n"

Comments should be simultaneously
written with program text

Problems with inserting them later
• Once program is written, tend to leave
them or abbreviate them
• Become inconsistent with the code
instead of contributing to program
clarity and correctness 6

Keywords
 auto do goto signed unsigned

break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch
continue float return typedef
default for short union

 Explicitly reserved words having a strict meaning in C
 Cannot be redefined or used in other contexts
 Some implementations provide additional keywords

2

7

Identifiers

Token composed of letters, digits, _
First character must be letter or underscore
Upper and lower-case are distinct
In ANSI C, only first 31 characters of

identifiers are discriminated
Avoid using identifiers starting with _

• Used mostly by the system libraries

8

Constants (Literals)

 Integer
• Can be written in decimal, hex, or octal
• Decimal: 0 8 10 81
• Octal: 000 010 012 0121
• Hex: 0x0 0x8 0xA 0x51

Character
• 'a' '5' '\n' '\t'

 Floating-Point
• 1.5 5. .7 0.75 1.2E5 1.25F 5.6L 7.8e-2L

Enumeration (ch. 7)

9

String Constants

Sequence of characters in pair of " "
(Stored as arrays of characters in C)

 "a string of text”
"" /* null string */
" " /* string of blanks */
" a = b + c; " /* not an integer expression */
" /* this is not a comment */ "
" string with double quotes \" in it ”
" single backslash: \\ "

10

Operators and Punctuators

 Similar to Java
Operators have rules of precedence and

associativity (page 52)
• 1 + 2 * 3 (* has higher precedence)
• 1 + 2 - 3 + 4 - 5 (associate left-to-right)
• - a * b - c (unary operator: higher prec.)

 Increment/Decrement operators: ++ --
• Apply only to variables
• Have side effects
• Examples…

11

Assignment Operators

Unlike other languages, = is a C operator
Value of right side is value of the assignment

expression as a whole
• a = (b = 2) + (c = 3);
• a = b = c = 0;

Low precedence, associates right to left
Other assignment operators: += -= *= /= %=

>>= <<= &= ^= |=
Examples…

12

Powers of Two

Write a C program to compute the first ten
powers of 2

3

13

Printing Random Numbers
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i, n;

 printf("\n%s\n%s",
 "Some randomly distributed integers will be printed.",
 "How many do you want to see? ");
 scanf("%d", &n);
 for (i = 0; i < n; ++i) {
 if (i % 6 == 0)
 printf("\n");
 printf("%9d", rand() % 10000);
 }
 printf("\n");
 return 0;
}

Contains function prototype: int rand(void); 14

Case Study Program
 A college offers a course that prepares students for the state licensing

exam for real estate brokers. Last year, several of the students who
completed this course took the licensing exam. Naturally, the college
wants to know how well its students did on the exam. You have been
asked to write a program to summarize the results. You have been
given a list of the students’ names. Next to each name a 1 is written if
the student passed the exam and a 2 if the student failed.

Your program should analyze the results of the exam as follows:
• Input each test result (i.e. 1 or 2). Display the message “Enter result” on

the screen each time the program requests another test result
• Count the number of test results of each type
• Display a summary of the test results indicating the number of students

who passed and the number who failed
• If more than 80% of the students passed the exam, print the message

“Raise tuition.”

