
1

Principles of Computer Science II
Nadeem Abdul Hamid

CSC121A - Spring 2005

Lecture Slides 11 - C Functions and
Structured Programming

2

Review

Relational, equality, and logical expressions
evaluate to int values 1 (true) or 0 (false)

Expressions are parsed according to precedence
and associativity rules
• Rules of parsing C are standardized; order of

evaluation is not (except for , ? && || operators)

 Statement forms
• sequence, empty, assignment, compound (block),

conditional (if/if-else/switch), looping (for/while/do-
while), goto, continue, break

3

Structured Programming

A p roblem-solving strategy and programmming
methodology
• Flow of control be as simple as possible
• Program construction using top-down design

Top-down design (stepwise refinement)
• Repeatedly decompose problem into smaller problems,

until you have a collection of small problems or tasks
which can be invidually coded very easily

Code for this decomposition is written using the
C function mechanism (similar to methods in
Java)

4

Histogram Program

Write a program that displays a histogram
(bar chart of *s) based on input read from a
file. The file contains an arbitrarily-long list
of numbers between 1 and 30. The last
number in the list is followed by a -1.

5

/*
 * histogram.c
 * Reads input and displays a histogram of stars
 * Input should be in the range 1 to 30
 * Nadeem Abdul Hamid
 */

/* #define WITHLABELS */

#include <stdio.h>

/* function prototype */
void printStars(int);

/* main function */
int main(void) {
 int n, res;

 res = scanf("%d", &n); /* priming read */
 while (res == 1 && n > 0 && n <= 30) {
 printStars(n);
 res = scanf("%d", &n); /* read next input value */
 }

 /* error if input conversion problem, or if n is not -1 or in the
 proper range [1 ... 30] */
 if (res != 1 || n != -1) {
 printf("Abnormal program termination: invalid input.\n");
 return -1;
 }

 return 0;
} /* end main */

/* printStars prints k stars and then a newline */
void printStars(int k) {
#ifdef WITHLABELS
 printf("%3d: ", k);
#endif
 for (; k > 0; --k) printf("*");
 printf("\n");
}

Histo
gram

 Program

6

C Functions

“Called” (“Invoked”) using the name of the
function followed by parentheses

Definition:
return-type function-name (parameter-type-list)
{

declarations
statements

}

2

7

Function Prototypes
return-type function-name (parameter-type-list) ;

-

Used to declare functions before they are used
• Identifiers in the type list are for documentation only -

ignored by compiler
• Variable number of arguments specified using …

(printf function)
One of most important improvements of ANSI C

over traditional C
• Allow compiler to validate function calls
• Values passed to functions are coerced, as necessary

8

/* try compiling with gcc -Wall … (turns on all warnings) */

#include <stdio.h>

int funcB(int);
int funcC(float x);

int main(void) {

printf("%f\n", funcA(3.7));
printf("%d\n", funcA(3.7));

printf("%f\n", funcB(3.7)); /* try (float) cast */
printf("%d\n", funcB(3.7));

return 0;
}

int funcA(int n) { return n * n; }

int funcB(int n) { return n * n; }

int funcC(int x) { return x * x; }

Conflicting prototype
and definition results
in compilation error

Parameter type list
allows compiler to
coerce (convert)
arguments to proper
data type

By default, C
assumes int return
type

9

Compiler’s View of Functions

 Function declarations generated in different ways
by the compiler
• Function call

• Compiler assumes default declaration, returning int and no
assumptions about parameters

• Function definition
• ANSI C style gives return type and parameter types

• Function prototype
• Special case of function declaration
• Header files mostly contain these prototypes

10

Declarations, Prototypes, Definitions

Function declaration specifies interface
between function and rest of world (return
type, argument types)

Function prototype is an ANSI-style
function declaration

Function definition gives same info as
declaration with names for arguments and
block of code

11

Other Features of C Functions

If no return type is specified for a function,
compiler assumes int
• but it is better style to always indicate the

return type
• Similarly, if a parameter’s type is not

specified, the compiler assumes int

12

C Standard Library

Be familiar with the functions in the library
(Appendix A)

Whenever possible, reuse functions from
the C library
• Reduces development time
• Increases program portability

3

13

Standard Library Headers
 <assert.h>

• Macros and information for
diagnostics and debugging

 <ctype.h>
• Character test functions,

conversions (upper-to-lowercase)
 <errno.h>

• Macros for reporting error
conditions

 <float.h>
• Floating point size limits

 <limits.h>
• Integral size limits

 <locale.h>
• Prototypes and info for modifying

locale of program - date, time
format, etc.

 <math.h>
• Math library functions

 <time.h>
• Functions and types for

manipulating time and date

 <setjmp.h>
• Functions allowing bypassing of

usual fn. call and return sequence
 <signal.h>

• Functions and macros handling
various program conditions that
may arise

 <stdarg.h>
• Dealing with variable argument

functions
 <stddef.h>

• Common C type definitions
 <stdio.h>

• Standard I/O functions and related
information

 <stdlib.h>
• Number-text conversion, memory

allocation, random numbers, other
utilities

 <string.h>
• String processing functions 14

Call-by-Value / Call-by-
Reference

Two forms of argument passing common in
programming languages

By value: a copy of the argument’s value is made
and passed to the called function
• Changes to copy do not affect original value in calling

function
By reference: Caller allows called function to

modify the variable’s value
• C simulates call-by-reference by passing addresses and

pointers as arguments (arrays are always passed by
reference)

15

Java Method
Invocation

class Pair {
 int a;
 int b;
 Pair(int aa, int bb) { a = aa; b = bb; }
}

public class Calls {
 public static void main(String args[]) {
 int i = 5;
 int j = 9;
 Pair q = new Pair(i, j);

 System.out.println(q.a + " ... " + q.b);
 System.out.println(i + " ... " + j);
 swapA(q);
 swapB(i, j);
 System.out.println(q.a + " ... " + q.b);
 System.out.println(i + " ... " + j);
 }

 static void swapA(Pair p) {
 int t = p.a;
 p.a = p.b;
 p.b = t;
 }

 static void swapB(int a, int b) {
 int t = a;
 b = a;
 a = t;
 }
}

 Call-by-value:
primitive type
arguments

 Call-by-reference:
object type
arguments

16

Programming Style
 Programs should be written as collections of small, well-

designed functions
• In most (large) programs, main consists of calls to other functions

that perform bulk of the program’s work
 Each function should be limited to performing a single,

well-defined task
• Function name should express the task clearly
• If you cannot choose a concise name for the function, it is

probably trying to do too much - break it up into smaller functions
 Functions should be no longer than one page

• Better yet, they should be no longer than half a page (15-20 lines
of code)

 Functions requiring large number of parameters may be
performing too many tasks

 A value-returning function should have only one (or very
few) return statement

17

Random-Number Generation
 <stdlib.h>

• rand()
• Produces a number between 0 and RAND_MAX

• srand(int)
• Seeds (initializes) the random number generator

 <time.h>
• time(NULL);

• Returns the current number of seconds since Jan 1, 1970

#include <stdlib.h>
#include <time.h>
…
 srand(time(NULL));
…
 int r = (rand() % 100) + 1; /* 1…100 */ 18

The smallest C program to print the biggest prime number
Here it is (479 bytes):

int m=754974721,N,t[1<<24],a,*p,i,e=30295789,j,s,b,c,U;f(d){for(s=1<<23;s;s/=2,d=
d*1LL*d%m)if(s<N)for(p=t;p<t+N;p+=s)for(i=s,c=1;i;i--)b=*p+p[s],p[s]=(m+*p-p[s])
*1LL*c%m,*p++=b%m,c=c*1LL*d%m;for(j=0;i<N-1;){for(s=N/2;!((j^=s)&s);s/=2);if(++i
<j)a=t[i],t[i]=t[j],t[j]=a;}}main(){*t=2;U=N=1;while(e/=2){N*=2;U=U*1LL*(m+1)/2%
m;f(362);for(p=t;p<t+N;)*p++=*p*1LL**p%m*U%m;f(415027540);for(a=0,p=t;p<t+N;)a+=
*p<<(e&1),*p++=a%10,a/=10;}while(!*--p);t[0]--;while(p>=t)printf("%d",*p--);}

 This program computes 224036583-1, which is the biggest known prime number (more than 7 million digits!). For more
information about how it was found and who found it, look at the GIMPS Project .

 I compiled it successfully with gcc with i86 Linux. It takes about 2 minutes on a 2.4 GHz Pentium 4. In order to
compile it, your C compiler must support the 64 bit long long type.

 This program basically converts from base 2 to base 10. It is a non trivial task because it deals with numbers of
millions of digits. The usual method (with repeated divisions by 10^N) would be far too slow. So I decided to use an
Integer Fast Fourier Transform. I believe it is one of the smallest implementation of such an algorithm.

 A previous version of this program to compute 26972593-1 won the International Obfuscated C Code Contest of Year
2000.

 This program is Freeware.
 Fabrice Bellard - http://bellard.org/
 last update: Jun 15, 2004

