Principles of Computer Science 11

Nadeem Abdul Hamid
CSC1214 - Spring 2005

Lecture Slides 11 - C Functions and
Structured Programming

Review

» Relational, equality, and logical expressions
evaluate to int values 1 (true) or o (false)

» Expressions are parsed according to precedence
and associativity rules

¢ Rules of parsing C are standardized; order of
evaluation is not (except for , ? && || operators)
> Statement forms

¢ sequence, empty, assignment, compound (block),
conditional (if/if-else/switch), looping (for/while/do-
while), goto, continue, break

©

Structured Programming

> A problem-solving strategy and programmming
methodology
* Flow of control be as simple as possible

¢ Program construction using top-down design
» Top-down design (stepwise refinement)

¢ Repeatedly decompose problem into smaller problems,
until you have a collection of small problems or tasks
which can be invidually coded very easily

» Code for this decomposition is written using the

C function mechanism (similar to methods in
Java)

Q‘O /* #deFine WITHLABELS */

& #include <stdio.h>
{b’ /* function prototype */
060 void printStarsC int);

* histogran.c
* Reads input and displays a histogr
* Tnput should be in the range 1 to

%"b’& :/Madeem Abdul Hamid

am of stars
30

/* main function */
int mainC void) {
int n, res;

res = scanf("¥d", &); /* priming read */
while (res == 1 8 n >0 & n <= 30) {
printstars(n);

res = scanf("%d", &n); /* read next input value */
1

/* error if input conversion problem, or if n is not -1 or in the
proper range [1 ... 30] */
if Crest=1 I nt=-1

)1
printfC "Abnormal progran termination: invalid input.\n");
return -1

return 0;
} /* end main */

/* printStars prints k stars and then a newline */
void printstars(int k) {
#ifdef WITHLABELS

printf("%3d: *,
tendif

103

for (5 k>
prinef(*\n");
b

-~k) printfC"e");

Histogram Program

» Write a program that displays a histogram
(bar chart of *s) based on input read from a
file. The file contains an arbitrarily-long list
of numbers between 1 and 30. The last
number in the list is followed by a -1.

C Functions

» “Called” (“Invoked”) using the name of the
function followed by parentheses
» Definition:

return-type function-name (parameter-type-list)

declarations
statements

Function Prototypes

return-type function-name (parameter-type-list) ;

» Used to declare functions before they are used
¢ Identifiers in the type list are for documentation only -
ignored by compiler
¢ Variable number of arguments specified using ...
(printf function)
» One of most important improvements of ANSI C
over traditional C
¢ Allow compiler to validate function calls
* Values passed to functions are coerced, as necessary

/* try compiling with gcc -Wall .. (turns on all warnings) */

#include <stdio.h>
Parameter type list

int funcB(int); allows compiler to
int funcC(float x); coerce (convert)

. . . arguments to proper
int main(void) { data type

printf("%f\n", funcAC 3.7)
Conflicting prototype printf("%d\n", funcA(3.7));
and definition results . N Y
o Sag— printf("%f\n", funcB(3.7)); fy (Roat) cast */
p printf("%d\n", funcB(3.7));
return @;
}
int funcAC int n) { return n * n; } By default, C
assumes int return
int funcB(int n) { return n * n; } type

int funcCC int x) { return x * x; }

Compiler’s View of Functions

» Function declarations generated in different ways
by the compiler

 Function call

¢ Compiler assumes default declaration, returning int and no
assumptions about parameters

 Function definition
¢ ANSI C style gives return type and parameter types

* Function prototype
 Special case of function declaration
¢ Header files mostly contain these prototypes

Declarations, Prototypes, Definitions

» Function declaration specifies interface
between function and rest of world (return
type, argument types)

» Function prototype is an ANSI-style
function declaration

» Function definition gives same info as
declaration with names for arguments and
block of code

10

Other Features of C Functions

» If no return type is specified for a function,
compiler assumes int
* but it is better style to always indicate the
return type
* Similarly, if a parameter’s type is not
specified, the compiler assumes int

C Standard Library

» Be familiar with the functions in the library
(Appendix A)
» Whenever possible, reuse functions from
the C library
* Reduces development time
* Increases program portability

v

v

v

v

v

Standard Library Headers

<assert.h>

+ Macros and information for
diagnostics and debugging

<ctype.h>

¢ Character test functions,
conversions (upper-to-lowercase)

<errno.h>

« Macros for reporting error
conditions
<float.h>
« Floating point size limits
<limits.h>
« Integral size limits
<locale.h>
« Prototypes and info for modifying
locale of program - date, time
format, etc.
<math.h>
¢ Math library functions
<time.h>
* Functions and types for
ing time and date

> <setjmp.h>
« Functions allowing bypassing of
usual fin, call and return sequence
<signal.h>
« Functions and macros handling
various program conditions that
may arise
<stdarg.h>

+ Dealing with variable argument
functions

» <stddef.h>
« Common C type definitions
» <stdio.h>
 Standard I/O functions and related
information
» <stdlib.h>
« Number-text conversion, memory
allocation, random numbers, other
utilities
» <string.h>
« String processing functions 13

v

v

Call-by-Value / Call-by-
Reference

» Two forms of argument passing common in
programming languages
» By value: a copy of the argument’s value is made
and passed to the called function
* Changes to copy do not affect original value in calling
function
» By reference: Caller allows called function to
modify the variable’s value
¢ C simulates call-by-reference by passing addresses and

pointers as arguments (arrays are always passed by
reference)

Java Method
Invocation

» Call-by-value:

in

class Pair {
ot o
int b;
Pair(int aa, int bb) { a = aa; b = bb; }

public class Calls

primitive type
arguments

» Call-by-reference:

object type
arguments 1

{
public static void main(String args[1) {
inti=5;

in

int j

Pair q = new Pair(i, j);
System.out.println(q.a + " "+q.b)
System.out.printlnC i+ " ... "+3)
swapAC q);

swapB(1, 3 J;

System.out.println(g.a + "+q.b)
System.out.println(i + " R

static void swapAC Pair p) {
i =p.a;

}

p.a
pb=

b;

static void swapB(int a, int b) {
int t = a;

b
a

a;
t;

Programming Style

» Programs should be written as collections of small, well-
designed functions
¢ In most (large) programs, main consists of calls to other functions
that perform bulk of the program’s work
» Each function should be limited to performing a single,
well-defined task
¢ Function name should express the task clearly
¢ If you cannot choose a concise name for the function, it is
probably trying to do too much - break it up into smaller functions
» Functions should be no longer than one page
¢ Better yet, they should be no longer than half a page (15-20 lines
of code)
» Functions requiring large number of parameters may be
performing too many tasks
» A value-returning function should have only one (or very
few) return statement o

Random-Number Generation

» <stdlib.h>

« rand(Q)

 Produces a number between @ and RAND_MAX

« srand(int)

¢ Seeds (initializes) the random number generator
» <time.h>

e time(NULL);

¢ Returns the current number of seconds since Jan 1, 1970

#include <stdlib.h>
#include <time.h>

srand(time(NULL));

int r = C randQ % 100) + 1;

/% 1.100 */7

The smallest C program to print the biggest prime number
Here it is (479 bytes):

int m=754974721 N[1<<24].a.%p,
dFILL#d%m)if(s<N)for(p=tp<t+Nip+=s
%om,*p++=bom,c=c* 1LL*d%m:for(j=0;i<N- :
<ja=tlil.il=t[jlfj}=a:} }main {#1=2:U=N=1while(e/=2) {N*=2:U=U* ILL*(m+1)/2%
mif(362):for(p=t;p<t+No)*p+-+=*p*1LL**p%m*Udbom:f(415027540):for(a <tNoJa+=
*pes(edl)*pr+=a%10.a/=10;while(1--p):t[0]-while(p>=t) printf("%d", *p--):}

i+

‘This program computes 22%5%3. 1, which is the biggest known prime number (more than 7 million digits!). For more
information about how it was found and who found it, look at the GIMPS Project .

I compiled it successfully with gee with i86 Linux. It takes about 2 minutes on a 2.4 GHz Pentium 4. In order to
compile it, your C compiler must support the 64 bit long long type.

This program basically converts from base 2 to base 10. It is a non trivial task because it deals with numbers of
millions of digits. The usual method (with repeated divisions by 10AN) would be far too slow. So I decided to use an
Integer Fast Fourier Transform. I believe it is one of the smallest implementation of such an algorithm.

A previous version of this program to compute 2673931 won the International Obfuscated C Code Contest of Year
2000.

This program is Freeware.
Fabrice Bellard - http://bellard.org/
last update: Jun 15, 2004

