
1

4

Principles of Computer
Science II

Prof. Nadeem Abdul Hamid
CSC 121 – Spring 2006

Lecture Unit 1 - Introduction and Review

5

CSC 121 - Course Mechanics
 Syllabus on web page

 http://fsweb.berry.edu/academic/mans/nhamid/classes/cs121/06_spr

 Class Meetings
 Lectures: Mon/Wed/Fri, 10–10:50AM, SCI 233
 Labs: Thu, 9 – 11AM, SCI 228

 Contact
 Phone: (706) 368-5632
 Email: nadeem@acm.org

 Office Hours: SCI 354B
 Mon-Fri 8-9AM
 Mon, Wed 11AM-noon
 Tue 10-11AM
 Tue, Thu 2-3PM
 (or by appt)

CSC121 — Berry College — Spring 2006

6

Assignments & Grading
 Attendance and participation (50 points)
 Lab and in-class assignments (50 points)
 Homework Assignments (600 points)

 You may find to be more difficult than CSC120
 Project (200 points)
 Exams (200 points) (tentative dates)

 Midterm Exam, Friday, February 24, 2006
 Final Exam, (TBA)

 (1100 pts total = A)

 Reading and Lecture schedule on webpage -- keep up with the
reading; you’re responsible for it (even if I don’t cover it in class) 7

Policies
 Attendance
 Academic Integrity
 Late Work

 NO LATE WORK ACCEPTED
 Assignments may take 4 - 8 hours per week -- don’t leave

till the last minute
 Disabilities

(See Course Overview for details…)

 This course will probably not be your easiest course this semester ,
but hopefully will be fun! If you think you’re spending too much time
stuck on assignments, or don’t understand a topic, come to office
hours, or email me…

8

Project

 Work in groups of 4 or 5.
 Program a computer game of your choice

 I will make suggestions for reasonable choices
 Grade based on group’s work as well as peer

evaluations

 More details to follow…

9

Hardware/Software

 CS Server: May be undergoing upgrade in
the first two weeks of classes…

 We will be using the Eclipse IDE as our
programming environment, although you do
not especially have to if you don’t want to.

2

10

Programming Review
 You should be familiar with…

 Foundation of OO Programs: Classes, Objects, and Methods
 Writing, Compiling, and Running Java Programs
 Fundamental Data Types
 Variables and Constants
 Identifiers
 Comments
 Importing Packages and Classes
 Basic Input/Output (I/O) Utilities
 Explicit Type Conversion (“Typecasting” or “Casting”)
 Selection
 Loops

11

Instantiating a new object

Account richsAccount = new Account();

new operator:
creates a new object

and returns its
location in memory

(reference)Object variable:
this is the name

(actually the reference)
for the new object --
it stores this object’s

location (address)

This is the class
from which the

object is created*

declares/defines
the type of the

object referred to
by the

object variable

*May include construction parameters, if any, inside parentheses

12

Fundamental Data Types
Summary

13

Variable types in OO programs

 Local variables
 Parameters
 Instance fields/variables

 Primitive type variables
 Object references
 Constants (‘final’ variables)

14

Recommended access levels
 Instance fields/variables  private

 This keeps the data “hidden” within the objects to support
the OO concepts of encapsulation and information hiding

 Methods  public (in some cases, private)
 Constructors  public
 Classes  public (in some cases, classes and their

constructors may instead be package-level access)

 What if you forget to specify public or private?? The
default is package access…

15

Explicit type conversion (casting)
 To perform an explicit type conversion (i.e., force a

change in data from one type to another), use the
typecast operator

 Example: to change an integer value, i, to float:
(float) i

 Example: to change the calculated sum of two integers, i
and j, to a float result:

(float) (i + j)

 Avoids Java compilation errors due to narrowing
conversions

3

16

Decisions/Selection
 A structured programming construct that enables the

programmer to select between two or more alternatives,
or “paths”, in a program

 The programmer must design the code so that decisions
are reduced to “yes/no” style questions which can be
evaluated as either:
true or false

 For example: is x greater than y? Is z less than 2?
 these are “yes/no” questions that evaluate to either true or

false
 boolean data types: true, false

17

Relational operators

 less than <
 less than or equal <=
 greater than >
 greater than or equal >=
 equal ==
 not equal !=

18

Logical operators

 Three logical operators are used to combine
logical values for the purpose of making a
complex decision:
 not !
 and &&
 or ||

Note: the order shown above also represents precedence for these logical operators

Note: !(x < y) is logically the same as x >= y 19

Multiway selection

 Multiway selection chooses among several
alternatives

 Two constructs:
 switch statement (only used for evaluating

selection conditions that are integer or character
constants)

 else if (alternate style to nested if statements –
can evaluate selection conditions over a range of
values)

20

switch block example

String input = JOptionPane.showInputDialog(“Enter selection (1 – 3): ”);
int someValue = Integer.parseInt(input);

switch (someValue)
{
 case 1: System.out.println(“This is case 1”);
 break;
 case 2: System.out.println(“This is case 2”);
 break;
 case 3: System.out.println(“This is case 3”);
 break;
 default: System.out.println(“This is default”);
 break;
}

Note: case labels may be integers or character constants (e.g., ‘A’)
21

else if source code example:
what does this method do?

public void score2grade (double score)
{

if (score >= 90.0)
 grade = 'A';
else if (score >= 80.0)
 grade = 'B';
else if (score >= 70.0)
 grade = 'C';
else if (score >= 60.0)
 grade = 'D';
else
 grade = 'F';

}

4

22

Comparing floating-point numbers

 Assume a very small number ε (Greek epsilon), typically
declared as a miniscule value such as 10-14

 For practical purposes in a program’s condition test, consider
two numbers equal if they are close enough such that:

|x - y| <= ε
 Or if dealing with really huge values, a better mathematical test

for two values being close enough for equality is:
|x - y| / max(|x|, |y|) <= ε

 Of course, if one of the values might be zero, don't divide
by max(|x |, |y|), since that would make the denominator 0

 Based on your application, you might choose another ε

23

String comparison
 Do not use == to test if strings’ contents are equal:

if (input == “yes”) // WRONG!!!
 Instead, be sure to use the equals() method:

if (string1.equals(string2)) …
if (input.equals(“yes”)) …

 Why? Because:
 == tests if both items reference the same string object (tests if

the reference, or address location, is the same)
 equals() tests if contents of both strings are the same

 Useful case-insensitive test method ("Y" or "y")
if (input.equalsIgnoreCase("Y"))

24

Lexicographic comparison of
strings (continued)

 string1.compareTo(string2)
 If it returns < 0: string1 alphabetizes before string2
 If it returns > 0: string1 alphabetizes after string2
 If it returns 0: string1 and string2 are equal

 Java’s alphabetization rules:
 "car" comes before "cargo"
 "cargo" comes before "cathode"
 Numbers come before letters (i.e., 8 comes before B)
 Uppercase letters come before lowercase

(i.e., "Hello" comes before "car")
 Space character comes before all others

25

Object comparison: the same
potential pitfall as strings

 Look at the following section of Java code

Rectangle cerealBox = new Rectangle(5, 10, 20, 30);
Rectangle r = cerealBox;
Rectangle oatMealBox = new Rectangle(5, 10, 20, 30);

 This comparison will be true:
if (cerealBox == r) …

 But this comparison will be false:
if (cerealBox == oatMealBox) …

 What’s going on here…

26

Object comparison: how to do it
 Do not use == to test if the contents of two separate

rectangle objects are the same:
if (cerealBox == oatmealBox) // FALSE!!!

 Instead, use the equals() method to do this:
if (cerealBox.equals(oatMealBox)) //TRUE!!!

 Why? Because:
 == tests if both references, or object variables, refer to the

same object (tests if the reference, or address location, is
the same for both  this tests for identity)

 equals() tests if the contents of the rectangles are same
 Later on, we’ll learn that you must “override” the equals()

method in a new class that you develop

27

Testing for null reference
 An object variable (reference) can hold the value null -- it

refers to no object (or no string) at all
 Use == in conditional tests to check for a null reference,

for example:
if (account == null)

 What good is this?? Here’s an example:
 showInputDialog() returns null if the user hits the Cancel

button of the input dialog window
String input = JOptionPane.showInputDialog("...");
if (input == null) { ... } //user canceled dialog

 null is not the same as the empty string ""

5

28

A note on coding style
 Indent bodies of classes/methods and if/switch/loop

statements
 Each level of nesting should be further indented
 Use 3 spaces (instead of tab character) for indentation
 Align each else statement with its corresponding if statement
 Place the opening brace for a body of code on a separate line
 Align the closing brace for a body of code with the opening

brace, and place the closing brace on a separate line
 Alternative layout for opening, closing braces…

 Just be neat and consistent

 Read Appendix A in the book and follow its guidelines

29

while loop syntax example
while (condition)

 statement;

 Repeats the statement while the condition is true.
Example:

while (balance < targetBalance)
 {
 year++;
 double increase = balance * rate / 100;
 balance = balance + increase;
 }

30

do…while loop syntax example
do
 statement;
while (condition);

 Executes loop body at least once and then as long as
condition is true. Example:

int value;
do
 {
 String input =

 JOptionPane.showInputDialog ("Please enter a number");
 value = Integer.parseInt(input);

…
 } while (value != 0);

31

for loop syntax

for (initialize; condition; update)
{
 statement(s) to be executed

}

Special Notes:
1. Notice the indentation style
2. If only one statement is controlled by the loop,

no curly braces are necessary to enclose the statement
3. There is no semicolon following the for control statement –

semicolons only terminate the executable statements in the body

32

 In this example, note that the variable i is
defined inside the for loop -- you can do this,
but then the scope of i is limited only to within
this loop

for (int i = 1; i <= n; i++)
 {
 double incr = balance * rate / 100;
 balance = balance + incr;
 }

for loop syntax example

33

Take note of the scope of variables

 The variables named i in the following for loops are
independent. Their scope is limited to their own
loops in which they were each defined.

for (int i = 1; i <= 10; i++)
System.out.println(i * i);

for (int i = 1; i <= 10; i++) //declared a new variable i
System.out.println(i * i * i);

The scope of this i is limited to its own loop

The scope of this i is limited to its own loop

6

34

String tokenization
 The StringTokenizer class provides a set of useful methods to

break up and process a single incoming string into smaller
strings/items, called tokens

 By default, white space separates (delimits) each token and is
discarded when processed

 For example, the string "4.3 7 -2" breaks neatly into three
separate tokens: "4.3", "7", "-2"

 Construct an object of the StringTokenizer class, then use the
StringTokenizer class methods

 There is a method option enabling you to use different
delimiters, such as a comma

 To use the methods of the StringTokenizer class, include:
import java.util.StringTokenizer;

35

String tokenization example for a
string named “input”

StringTokenizer tokenizer = new StringTokenizer(input);

while(tokenizer.hasMoreTokens())
{
 String singleToken = tokenizer.nextToken();
 double x = Double.parseDouble(singleToken);
 …
}

36

 In addition to its use in exiting a switch block, a break statement
may also be used to immediately exit for, while, or do…while
loops. Here’s a code fragment example:

while (true)
{
 String input =
 JOptionPane.showInputDialog(“Enter value, Cancel to quit”);
 if (input == null)
 break; //exit loop now!!
 double x = Double.parseDouble(input);
 …
}

break statements

37

 A continue statement immediately jumps to the end of the current
iteration of the loop. Here’s a code fragment example:

String input;
do
{
 input =
 JOptionPane.showInputDialog(“Enter value, Cancel to quit”);
 if (input == null)
 continue; //jump to the end of the loop body now!!
 double x = Double.parseDouble(input);
 …
 //the above continue statement jumps to this point in code
} while (input != null);

continue statements

38

Use of break and continue
statements in loops

 Despite having shown the previous two code
fragment examples, not all programmers
agree with the use of break and continue
statements to control a loop

 You can avoid inserting these statements in a
loop if you rethink your loop’s logic

