
1

1

Principles of Computer
Science II

Prof. Nadeem Abdul Hamid
CSC 121 – Spring 2006

Lecture Unit 2 - Interfaces and Polymorphism

2

Lecture Outline

 Interfaces
 Polymorphism
 Inner classes
 Event-listeners

CSC121 — Berry College — Spring 2006

3

/** Computes various statistics of a set of data values */

public class DataSet {

 private double sum;
 private double maximum;
 private int count;

 /** Constructs an empty data set. */
 public DataSet() {
 sum = 0;
 count = 0;
 maximum = 0;
 }

 /** Adds a data value to the data set
 @param x a data value */
 public void add(double x) {
 sum = sum + x;
 if (count == 0 || maximum < x) maximum = x;
 count++;
 }

 /** Gets the average of the added data.
 @return the average or 0 if no data has been added */
 public double getAverage() {
 if (count == 0) return 0;
 else return sum / count;
 }

 /** Gets the largest of the added data.
 @return the maximum or 0 if no data has been added */
 public double getMaximum() {
 return maximum;
 }
} 4

// modified for handling a set of BankAccounts
public class BankDataSet {

 private double sum;
 private BankAccount maximum;
 private int count;

 ...

 public void add(BankAccount x) {
 sum = sum + x.getBalance();
 if (count == 0 || maximum.getBalance() < x.getBalance())

 maximum = x;
 count++;
 }

 public BankAccount getMaximum() {
 return maximum;
 }

}

5

// modified for handling a set of Coins
public class CoinDataSet {

 private double sum;
 private Coin maximum;
 private int count;

 ...

 public void add(Coin x) {
 sum = sum + x.getValue();
 if (count == 0 || maximum.getValue() < x.getValue())

 maximum = x;
 count++;
 }

 public Coin getMaximum() {
 return maximum;
 }

}

6

DataSet Issues
 The fundamental method of analyzing the data is the

same
 Details of how to determine the value of data (bank

accounts/coins) differ
 Suppose classes agreed on a common method for

returning the measure needed for data analysis
 getMeasure() - returns balance for bank accounts
 getMeasure() - returns value for coins

 add method looks like:
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() < x.getMeasure())

 maximum = x;
 count++;

2

7

Interface Types
 What is the type of x in the add method?

 Should be any class that has a getMeasure
method

 In Java, use interface types to specify
required operations that must be supported
by a set of classes

public interface Measurable {

 double getMeasure();

 // other required methods ...
}

8

Interfaces vs. Classes
 All methods in interface type are abstract -- i.e. have

header (name,params,return) but no implementation
(body)
 Just a semicolon following the method header

 All methods in interface are automatically public
 public double getMeasure();

 Interface cannot have instance fields

9

/** Computes various statistics of a set of data values */

public class DataSet {
 private double sum;
 private Measurable maximum;
 private int count;

 /** Constructs an empty data set. */
 public DataSet() {
 sum = 0;
 count = 0;
 maximum = null;
 }

 /** Adds a data value to the data set
 @param x a data value */
 public void add(Measurable x) {
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() < x.getMeasure())

 maximum = x;
 count++;
 }

 /** Gets the average of the added data.
 @return the average or 0 if no data has been added */
 public double getAverage() {
 if (count == 0) return 0;
 else return sum / count;
 }

 /** Gets the largest of the added data.
 @return the maximum or 0 if no data has been added */
 public Measurable getMaximum() {
 return maximum;
 }
}

10

public class BankAccount implements Measurable {
 private double balance;

 public BankAccount(double bal) {
 balance = bal;
 }

 // other BankAccount methods: withdraw, deposit, getBalance, ...

 public double getMeasure() { return balance; }
}

public class Coin implements Measurable {
 private double value;
 private String name;

 public Coin(double val, String n) {
 value = val;

 name = n;
 }

 // other Coin methods ...

 public double getMeasure() { return value; }
}

11

/** This program tests the DataSet class. */
public class DataSetTester {

 public static void main(String[] args) {

 DataSet bankData = new DataSet();

 bankData.add(new BankAccount(0));
 bankData.add(new BankAccount(10000));
 bankData.add(new BankAccount(2000));

 System.out.println("Average balance = " + bankData.getAverage());
 Measurable max = bankData.getMaximum();
 System.out.println("Highest balance = " + max.getMeasure());

 DataSet coinData = new DataSet();

 coinData.add(new Coin(0.25, "quarter"));
 coinData.add(new Coin(0.1, "dime"));
 coinData.add(new Coin(0.05, "nickel"));

 System.out.println("Average coin value = " + coinData.getAverage());
 max = coinData.getMaximum();
 System.out.println("Highest coin value = " + max.getMeasure());

 }

} 12

Benefit of Interfaces
 Measurable interface expresses what all measurable

objects have in common
 Allows for reusable version of DataSet class - can analyze

collections of objects of any class that supports
Measurable interface

 Interfaces can reduce coupling (dependencies)
between classes

 Use the implements keyword to indicate that a class
supports all operations of an interface type

3

13

Why Use Interfaces?
 Because interfaces “institutionalize” a standard set

of method prototypes in a software product,
requiring teams of programmers to follow an
established template or pattern in developing a
group of related classes.

 Standardization is good – it can improve product
quality, reduce development time, and simplify
maintenance of code throughout its lifecycle,
especially for a very large, complex program!

 This provides project managers and senior code
developers with some control over a team of
programmers developing many classes

14

Interfaces: UML Diagram

 Interfaces are tagged with a “stereotype” indicator «interface»
 A dotted arrow with a triangular tip denotes the “is-a” relationship

between a class and an interface
 A dotted line with an open v-shaped arrow tip denotes the “uses”

relationship or dependency

 Note: DataSet is decoupled from BankAccount and Coin

15

Syntax: Interfaces

 Syntax figures 11.1 and 11.2 (page 414)
// defining…
 public interface InterfaceName
 {
 method signatures
 }

// implementing…
 public class ClassName
 implements InterfaceName, InterfaceName, ...
 {
 methods and fields
 }

16

Constants in Interfaces

 Interfaces cannot have instance fields, but
may define constants

 Constants defined in interfaces automatically
defined as public static final

 Example:
public interface SwingConstants {

 public static final int NORTH = 1;
 public static final int NORTHEAST = 2;
 public static final int EAST = 3;
 . . .
}

17

Converting Between Class and
Interface Types

 You can convert from a class type to an
interface type, provided the class implements
the interface

 Cannot convert between unrelated types

BankAccount account = new BankAccount(10000);
Measurable x = account; // OK

Coin dime = new Coin(0.1, "dime");
Measurable x = dime; // Also OK

Measurable x = new Rectangle(5, 10, 20, 30); // ERROR

18

Converting from Interface to
Class Type

 Compiler can’t tell for certain that max refers to a
Coin object - although you can

 Need a cast to convert from interface type to class
type
 If you are wrong and max isn’t a Coin object, the program

throws an exception when you run it

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
coinData.add(new Coin(0.05, "nickel"));
Measurable max = coinData.getMaximum();

Coin maxCoin = max; // ERROR
String maxCoinName = maxCoin.getName();

Coin maxCoin = (Coin) max; // OK
String maxCoinName = maxCoin.getName();

4

19

Casts: Numbers and Objects
 Casting is used to convert between types

 When casting number types you agree to the
information loss

 When casting object types you agree to the
risk of causing an exception

double average = 6.7 / 3.4;
int avg = (int) average;

20

Common Error: Instantiating
Interfaces

 You can defined variables of an interface
type:

 But you can never construct an interface
‘object’:

 You can only construct objects of a class that
implements the interface:

Measurable x;

Measurable x = new Measurable(); // ERROR

Measurable x = new BankAccount(); // OK

21

Polymorphism
 Definition: Principle that behavior of some code

varies depending on the actual type of an object

 Interface variable holds reference to object of a
class that implements the interface

 When you call a method of the interface,

which method is actually called?

Measurable x;
...
x = new Coin(0.1, "dime");
...
x = new BankAccount(10000.0);

double m = x.getMeasure();

22

Polymorphism (cont.)
 Method called depends on the actual object

 If x refers to a BankAccount, calls BankAccount
class’ implementation of getMeasure()

 If x refers to a Coin, calls Coin class’
implementation of getMeasure()

 Also referred to as late-binding: selection of
the actual method takes place at run-time

 Overloaded methods resolved using early-
binding: i.e. determined at compile-time

23

Making DataSet More Reusable
 Limitations of DataSet handling Measurable

objects
 Can only add Measurable interface to classes

under your control (e.g. can’t redefine the
standard API Rectangle class)

 Can only measure an object in one way -- i.e.
each class provides a single implementation of
getMeasure() method
 e.g. Sometimes may want to analyze BankAccounts

based on balance; sometimes based on interest rate

24

Callbacks

 Mechanism for one component (e.g.
DataSet) to invoke a method (e.g.
getMeasure()) on another component (e.g.
Rectangle) without having been written in
terms of, or with knowledge of, the other
component's type.

 Section 11.4 (in-class exercise)

