
1

1

Principles of Computer
Science II

Prof. Nadeem Abdul Hamid
CSC 121 – Spring 2006

Lecture Unit 2 - Interfaces and Polymorphism

2

Lecture Outline

 Interfaces
 Polymorphism
 Inner classes
 Event-listeners

CSC121 — Berry College — Spring 2006

3

/** Computes various statistics of a set of data values */

public class DataSet {

 private double sum;
 private double maximum;
 private int count;

 /** Constructs an empty data set. */
 public DataSet() {
 sum = 0;
 count = 0;
 maximum = 0;
 }

 /** Adds a data value to the data set
 @param x a data value */
 public void add(double x) {
 sum = sum + x;
 if (count == 0 || maximum < x) maximum = x;
 count++;
 }

 /** Gets the average of the added data.
 @return the average or 0 if no data has been added */
 public double getAverage() {
 if (count == 0) return 0;
 else return sum / count;
 }

 /** Gets the largest of the added data.
 @return the maximum or 0 if no data has been added */
 public double getMaximum() {
 return maximum;
 }
} 4

// modified for handling a set of BankAccounts
public class BankDataSet {

 private double sum;
 private BankAccount maximum;
 private int count;

 ...

 public void add(BankAccount x) {
 sum = sum + x.getBalance();
 if (count == 0 || maximum.getBalance() < x.getBalance())

 maximum = x;
 count++;
 }

 public BankAccount getMaximum() {
 return maximum;
 }

}

5

// modified for handling a set of Coins
public class CoinDataSet {

 private double sum;
 private Coin maximum;
 private int count;

 ...

 public void add(Coin x) {
 sum = sum + x.getValue();
 if (count == 0 || maximum.getValue() < x.getValue())

 maximum = x;
 count++;
 }

 public Coin getMaximum() {
 return maximum;
 }

}

6

DataSet Issues
 The fundamental method of analyzing the data is the

same
 Details of how to determine the value of data (bank

accounts/coins) differ
 Suppose classes agreed on a common method for

returning the measure needed for data analysis
 getMeasure() - returns balance for bank accounts
 getMeasure() - returns value for coins

 add method looks like:
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() < x.getMeasure())

 maximum = x;
 count++;

2

7

Interface Types
 What is the type of x in the add method?

 Should be any class that has a getMeasure
method

 In Java, use interface types to specify
required operations that must be supported
by a set of classes

public interface Measurable {

 double getMeasure();

 // other required methods ...
}

8

Interfaces vs. Classes
 All methods in interface type are abstract -- i.e. have

header (name,params,return) but no implementation
(body)
 Just a semicolon following the method header

 All methods in interface are automatically public
 public double getMeasure();

 Interface cannot have instance fields

9

/** Computes various statistics of a set of data values */

public class DataSet {
 private double sum;
 private Measurable maximum;
 private int count;

 /** Constructs an empty data set. */
 public DataSet() {
 sum = 0;
 count = 0;
 maximum = null;
 }

 /** Adds a data value to the data set
 @param x a data value */
 public void add(Measurable x) {
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() < x.getMeasure())

 maximum = x;
 count++;
 }

 /** Gets the average of the added data.
 @return the average or 0 if no data has been added */
 public double getAverage() {
 if (count == 0) return 0;
 else return sum / count;
 }

 /** Gets the largest of the added data.
 @return the maximum or 0 if no data has been added */
 public Measurable getMaximum() {
 return maximum;
 }
}

10

public class BankAccount implements Measurable {
 private double balance;

 public BankAccount(double bal) {
 balance = bal;
 }

 // other BankAccount methods: withdraw, deposit, getBalance, ...

 public double getMeasure() { return balance; }
}

public class Coin implements Measurable {
 private double value;
 private String name;

 public Coin(double val, String n) {
 value = val;

 name = n;
 }

 // other Coin methods ...

 public double getMeasure() { return value; }
}

11

/** This program tests the DataSet class. */
public class DataSetTester {

 public static void main(String[] args) {

 DataSet bankData = new DataSet();

 bankData.add(new BankAccount(0));
 bankData.add(new BankAccount(10000));
 bankData.add(new BankAccount(2000));

 System.out.println("Average balance = " + bankData.getAverage());
 Measurable max = bankData.getMaximum();
 System.out.println("Highest balance = " + max.getMeasure());

 DataSet coinData = new DataSet();

 coinData.add(new Coin(0.25, "quarter"));
 coinData.add(new Coin(0.1, "dime"));
 coinData.add(new Coin(0.05, "nickel"));

 System.out.println("Average coin value = " + coinData.getAverage());
 max = coinData.getMaximum();
 System.out.println("Highest coin value = " + max.getMeasure());

 }

} 12

Benefit of Interfaces
 Measurable interface expresses what all measurable

objects have in common
 Allows for reusable version of DataSet class - can analyze

collections of objects of any class that supports
Measurable interface

 Interfaces can reduce coupling (dependencies)
between classes

 Use the implements keyword to indicate that a class
supports all operations of an interface type

3

13

Why Use Interfaces?
 Because interfaces “institutionalize” a standard set

of method prototypes in a software product,
requiring teams of programmers to follow an
established template or pattern in developing a
group of related classes.

 Standardization is good – it can improve product
quality, reduce development time, and simplify
maintenance of code throughout its lifecycle,
especially for a very large, complex program!

 This provides project managers and senior code
developers with some control over a team of
programmers developing many classes

14

Interfaces: UML Diagram

 Interfaces are tagged with a “stereotype” indicator «interface»
 A dotted arrow with a triangular tip denotes the “is-a” relationship

between a class and an interface
 A dotted line with an open v-shaped arrow tip denotes the “uses”

relationship or dependency

 Note: DataSet is decoupled from BankAccount and Coin

15

Syntax: Interfaces

 Syntax figures 11.1 and 11.2 (page 414)
// defining…
 public interface InterfaceName
 {
 method signatures
 }

// implementing…
 public class ClassName
 implements InterfaceName, InterfaceName, ...
 {
 methods and fields
 }

16

Constants in Interfaces

 Interfaces cannot have instance fields, but
may define constants

 Constants defined in interfaces automatically
defined as public static final

 Example:
public interface SwingConstants {

 public static final int NORTH = 1;
 public static final int NORTHEAST = 2;
 public static final int EAST = 3;
 . . .
}

17

Converting Between Class and
Interface Types

 You can convert from a class type to an
interface type, provided the class implements
the interface

 Cannot convert between unrelated types

BankAccount account = new BankAccount(10000);
Measurable x = account; // OK

Coin dime = new Coin(0.1, "dime");
Measurable x = dime; // Also OK

Measurable x = new Rectangle(5, 10, 20, 30); // ERROR

18

Converting from Interface to
Class Type

 Compiler can’t tell for certain that max refers to a
Coin object - although you can

 Need a cast to convert from interface type to class
type
 If you are wrong and max isn’t a Coin object, the program

throws an exception when you run it

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
coinData.add(new Coin(0.05, "nickel"));
Measurable max = coinData.getMaximum();

Coin maxCoin = max; // ERROR
String maxCoinName = maxCoin.getName();

Coin maxCoin = (Coin) max; // OK
String maxCoinName = maxCoin.getName();

4

19

Casts: Numbers and Objects
 Casting is used to convert between types

 When casting number types you agree to the
information loss

 When casting object types you agree to the
risk of causing an exception

double average = 6.7 / 3.4;
int avg = (int) average;

20

Common Error: Instantiating
Interfaces

 You can defined variables of an interface
type:

 But you can never construct an interface
‘object’:

 You can only construct objects of a class that
implements the interface:

Measurable x;

Measurable x = new Measurable(); // ERROR

Measurable x = new BankAccount(); // OK

21

Polymorphism
 Definition: Principle that behavior of some code

varies depending on the actual type of an object

 Interface variable holds reference to object of a
class that implements the interface

 When you call a method of the interface,

which method is actually called?

Measurable x;
...
x = new Coin(0.1, "dime");
...
x = new BankAccount(10000.0);

double m = x.getMeasure();

22

Polymorphism (cont.)
 Method called depends on the actual object

 If x refers to a BankAccount, calls BankAccount
class’ implementation of getMeasure()

 If x refers to a Coin, calls Coin class’
implementation of getMeasure()

 Also referred to as late-binding: selection of
the actual method takes place at run-time

 Overloaded methods resolved using early-
binding: i.e. determined at compile-time

23

Making DataSet More Reusable
 Limitations of DataSet handling Measurable

objects
 Can only add Measurable interface to classes

under your control (e.g. can’t redefine the
standard API Rectangle class)

 Can only measure an object in one way -- i.e.
each class provides a single implementation of
getMeasure() method
 e.g. Sometimes may want to analyze BankAccounts

based on balance; sometimes based on interest rate

24

Callbacks

 Mechanism for one component (e.g.
DataSet) to invoke a method (e.g.
getMeasure()) on another component (e.g.
Rectangle) without having been written in
terms of, or with knowledge of, the other
component's type.

 Section 11.4 (in-class exercise)

