
1

1

Principles of Computer
Science II

Prof. Nadeem Abdul Hamid
CSC 121 – Spring 2006

Lecture Unit 4 - Inheritance

2

Inheritance
 Extending classes by adding methods and

fields
 Extended class = “Superclass”
 Extending class = “Subclass”

 Inheriting from a class is not the same as
implementing an interface
 Subclass inherits behavior and state

 Advantage of inheritance: Code reuse

CSC121 — Berry College — Spring 2006

3

Inheritance Diagram

 Every class in Java extends the
Object class either directly or
indirectly

4

Inheritance Hierarchies

 Sets of classes can form complex
inheritance hierarchies

5

Swing Example

6

Subclass Methods
 Inherit method:

 Don’t supply a new implementation of a method that exists
in superclass

 Superclass method can be applied to the subclass objects
 Override method:

 Supply a different implementation of a method that exists in
the superclass

 Must have same signature (same name and same
parameter types)

 If method is applied to an object of the subclass type, the
overriding method is executed

 Add method:
 Supply a new method that doesn’t exist in the superclass
 New method can be applied only to subclass objects

2

7

Instance Fields
 Can’t override fields
 Can:

 Inherit a field: All fields from the superclass are
automatically inherited

 Add a field: Supply a new field that doesn’t exist in the
superclass

 What if you define a new field with the same name
as a superclass field?
 Each object would have two instance fields of the same

name
 Fields can hold different values
 Legal but extremely undesirable

8

Instance Fields
// COMPILE ERROR ******

class A {
 private int x;

//...
}

class B extends A {
//...

 public void methodB() {
x = 2;

 }
}

9

Common Error: Shadowing
Fields

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 balance = balance + amount;
 }
 . . .

 private double balance; // Don't
}

10

Invoking Superclass Methods
class A {
 public void method() {

System.out.println("Method A");
 }
}

class B {
 public void method() {

method(); // infinite call to itself
System.out.println("Method B");

 }
}

class A {
 public void method() {

System.out.println("Method A");
 }
}

class B {
 public void method() {

super.method();
System.out.println("Method B");

 }
}

11

Subclass Constructors
 super followed by a parenthesis indicates a call to

the superclass constructor
 Must be the first statement in subclass constructor
 If subclass constructor doesn’t call superclass

constructor, default superclass constructor is used
 Default constructor: constructor with no parameters
 If all constructors of the superclass require parameters,

then the compiler reports an error

12

Converting Types

 Ok to convert subclass reference to
superclass reference

SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;
Object anObject = collegeFund;

3

13

Converting Between Types
 Superclass references don't know the full story:

 When you convert between a subclass object to its superclass
type:
 The value of the reference stays the same–it is the memory

location of the object
 But, less information is known about the object

 Why would anyone want to know less about an object?
 Reuse code that knows about the superclass but not the

subclass:

 Can be used to transfer money from any type of BankAccount

anAccount.deposit(1000); // OK
anAccount.addInterest(); // No--not a method of the class to which anAccount belongs

public void transfer(double amount, BankAccount other) {
 withdraw(amount);
 other.deposit(amount);
}

14

Casting Object Types
 Occasionally you need to convert from a superclass

reference to a subclass reference

 This cast is dangerous: if you are wrong, an
exception is thrown

 Solution: use the instanceof operator
 instanceof: tests whether an object belongs to a

particular type

BankAccount anAccount = (BankAccount) anObject;

if (anObject instanceof BankAccount) {
 BankAccount anAccount = (BankAccount) anObject;
 . . .

15

Polymorphism
 In Java, type of a variable doesn't completely

determine type of object to which it refers

 Method calls are determined by type of actual
object, not type of object reference

 Compiler needs to check that only legal methods are
invoked

BankAccount aBankAccount = new SavingsAccount(1000);
// aBankAccount holds a reference to a SavingsAccount

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);
 // Calls "deposit" from CheckingAccount

Object anObject = new BankAccount();
anObject.deposit(1000); // Wrong!

16

Polymorphism
 Polymorphism: ability to refer to objects of

multiple types with varying behavior
 Polymorphism at work:

 Depending on types of amount and other,
different versions of withdraw and
deposit are called

public void transfer(double amount, BankAccount other) {
 withdraw(amount);
 other.deposit(amount);
}

17

Access Control
 Java has four levels of controlling access to

fields, methods, and classes:
 public - Can be accessed by methods of all

classes
 private - Can be accessed only by the methods of

their own class
 package access (default) - Can be accessed by

all classes in the same package (folder)
 protected - Can be accessed by all subclasses

and by all classes in the same package

18

Recommended Access Levels
 Instance and static fields: Always private.

Exceptions:
 public static final constants are useful and safe
 Some objects, such as System.out, need to be accessible

to all programs (public)
 Occasionally, classes in a package must collaborate very

closely (give some fields package access); inner classes
are usually better

 Methods: public or private
 Classes and interfaces: public or package

 Better alternative to package access: inner classes
 In general, inner classes should not be public (some

exceptions exist, e.g., Ellipse2D.Double)

 Beware of accidental package access (forgetting public or private)

4

19

Object: The Cosmic
Superclass

 All classes defined without an explicit
extends clause automatically extend Object

20

Object Class Methods

 Most useful methods:
 String toString()
 boolean equals(Object otherObject)
 Object clone()

 Good idea to override these methods in your
classes

21

The toString() method
 Returns a string representation of the object
 Useful for debugging:

 toString is called whenever you concatenate
 a string with an object:

 Object.toString prints class name and the
 hash code of the object

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
// Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

"box=" + box;
// Result: "box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to something like "BankAccount@d24606bf" 22

Overriding the toString()
method

 To provide a nicer representation of an
object, override toString:

 This works better:

public String toString() {
 return "BankAccount[balance=" + balance + "]";
}

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to "BankAccount[balance=5000]"

23

The equals() method

 Tests for equal contents:

Figure 9:
Two References to
Equal Objects 24

The equals() method

 == tests for equal location

Figure 10:
Two References to the Same Object

5

25

Overriding equals()
 Define the equals method to test whether two

objects have equal state
 When redefining equals method, you cannot

change object signature; use a cast instead:

 (You should also override the hashCode method so
that equal objects have the same hash code)

public class Coin {
 . . .
 public boolean equals(Object otherObject) {
 Coin other = (Coin) otherObject;

 return name.equals(other.name) && value == other.value;
 }
 . . .
}

26

The clone() method

 Copying an object reference gives two
references to same object

 Sometimes, you need to make a copy of the
object

BankAccount account2 = account;

27

The clone() method

 Define clone method to make new object
(see Advanced Topic 13.6)

 Use clone:

 Must cast return value because return type is
Object

BankAccount clonedAccount = (BankAccount) account.clone();

28

The Object.clone() method

 Creates shallow copies

29

Object.clone()…
 Does not systematically clone all subobjects
 Must be used with caution
 It is declared as protected; prevents from

accidentally calling x.clone() if the class to
which x belongs hasn't redefined clone to be
public

 You should override the clone method with
care (see Advanced Topic 13.6)

30

Scripting Languages

 Integrated with software for purpose of
automating repetitive tasks

 Script: Very high-level, often short, program,
written in a high-level scripting language

 Scripting languages: Unix shells, Tcl, Perl,
Python, Ruby, Scheme, Rexx, JavaScript,
VisualBasic, ...

6

31

Characteristics of a script
 Glue other programs together
 Extensive text processing
 File and directory manipulation
 Often special-purpose code
 Many small interacting scripts may yield a big

system
 Perhaps a special-purpose GUI on top
 Portable across Unix, Windows, Mac
 Interpreted program (no compilation+linking)

32

Why Scripts?
 Features of Perl and Python compared with

Java, C/C++ and Fortran:
 shorter, more high-level programs
 much faster software development
 more convenient programming
 you feel more productive

 Reasons:
 no variable declarations, but lots of consistency

checks at run time
 lots of standardized libraries and tools

