
1

1

Principles of Computer
Science II

Prof. Nadeem Abdul Hamid
CSC 121 – Spring 2006

Lecture Unit 4 - Inheritance

2

Inheritance
 Extending classes by adding methods and

fields
 Extended class = “Superclass”
 Extending class = “Subclass”

 Inheriting from a class is not the same as
implementing an interface
 Subclass inherits behavior and state

 Advantage of inheritance: Code reuse

CSC121 — Berry College — Spring 2006

3

Inheritance Diagram

 Every class in Java extends the
Object class either directly or
indirectly

4

Inheritance Hierarchies

 Sets of classes can form complex
inheritance hierarchies

5

Swing Example

6

Subclass Methods
 Inherit method:

 Don’t supply a new implementation of a method that exists
in superclass

 Superclass method can be applied to the subclass objects
 Override method:

 Supply a different implementation of a method that exists in
the superclass

 Must have same signature (same name and same
parameter types)

 If method is applied to an object of the subclass type, the
overriding method is executed

 Add method:
 Supply a new method that doesn’t exist in the superclass
 New method can be applied only to subclass objects

2

7

Instance Fields
 Can’t override fields
 Can:

 Inherit a field: All fields from the superclass are
automatically inherited

 Add a field: Supply a new field that doesn’t exist in the
superclass

 What if you define a new field with the same name
as a superclass field?
 Each object would have two instance fields of the same

name
 Fields can hold different values
 Legal but extremely undesirable

8

Instance Fields
// COMPILE ERROR ******

class A {
 private int x;

//...
}

class B extends A {
//...

 public void methodB() {
x = 2;

 }
}

9

Common Error: Shadowing
Fields

public class CheckingAccount extends BankAccount
{
 public void deposit(double amount)
 {
 transactionCount++;
 balance = balance + amount;
 }
 . . .

 private double balance; // Don't
}

10

Invoking Superclass Methods
class A {
 public void method() {

System.out.println("Method A");
 }
}

class B {
 public void method() {

method(); // infinite call to itself
System.out.println("Method B");

 }
}

class A {
 public void method() {

System.out.println("Method A");
 }
}

class B {
 public void method() {

super.method();
System.out.println("Method B");

 }
}

11

Subclass Constructors
 super followed by a parenthesis indicates a call to

the superclass constructor
 Must be the first statement in subclass constructor
 If subclass constructor doesn’t call superclass

constructor, default superclass constructor is used
 Default constructor: constructor with no parameters
 If all constructors of the superclass require parameters,

then the compiler reports an error

12

Converting Types

 Ok to convert subclass reference to
superclass reference

SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;
Object anObject = collegeFund;

3

13

Converting Between Types
 Superclass references don't know the full story:

 When you convert between a subclass object to its superclass
type:
 The value of the reference stays the same–it is the memory

location of the object
 But, less information is known about the object

 Why would anyone want to know less about an object?
 Reuse code that knows about the superclass but not the

subclass:

 Can be used to transfer money from any type of BankAccount

anAccount.deposit(1000); // OK
anAccount.addInterest(); // No--not a method of the class to which anAccount belongs

public void transfer(double amount, BankAccount other) {
 withdraw(amount);
 other.deposit(amount);
}

14

Casting Object Types
 Occasionally you need to convert from a superclass

reference to a subclass reference

 This cast is dangerous: if you are wrong, an
exception is thrown

 Solution: use the instanceof operator
 instanceof: tests whether an object belongs to a

particular type

BankAccount anAccount = (BankAccount) anObject;

if (anObject instanceof BankAccount) {
 BankAccount anAccount = (BankAccount) anObject;
 . . .

15

Polymorphism
 In Java, type of a variable doesn't completely

determine type of object to which it refers

 Method calls are determined by type of actual
object, not type of object reference

 Compiler needs to check that only legal methods are
invoked

BankAccount aBankAccount = new SavingsAccount(1000);
// aBankAccount holds a reference to a SavingsAccount

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);
 // Calls "deposit" from CheckingAccount

Object anObject = new BankAccount();
anObject.deposit(1000); // Wrong!

16

Polymorphism
 Polymorphism: ability to refer to objects of

multiple types with varying behavior
 Polymorphism at work:

 Depending on types of amount and other,
different versions of withdraw and
deposit are called

public void transfer(double amount, BankAccount other) {
 withdraw(amount);
 other.deposit(amount);
}

17

Access Control
 Java has four levels of controlling access to

fields, methods, and classes:
 public - Can be accessed by methods of all

classes
 private - Can be accessed only by the methods of

their own class
 package access (default) - Can be accessed by

all classes in the same package (folder)
 protected - Can be accessed by all subclasses

and by all classes in the same package

18

Recommended Access Levels
 Instance and static fields: Always private.

Exceptions:
 public static final constants are useful and safe
 Some objects, such as System.out, need to be accessible

to all programs (public)
 Occasionally, classes in a package must collaborate very

closely (give some fields package access); inner classes
are usually better

 Methods: public or private
 Classes and interfaces: public or package

 Better alternative to package access: inner classes
 In general, inner classes should not be public (some

exceptions exist, e.g., Ellipse2D.Double)

 Beware of accidental package access (forgetting public or private)

4

19

Object: The Cosmic
Superclass

 All classes defined without an explicit
extends clause automatically extend Object

20

Object Class Methods

 Most useful methods:
 String toString()
 boolean equals(Object otherObject)
 Object clone()

 Good idea to override these methods in your
classes

21

The toString() method
 Returns a string representation of the object
 Useful for debugging:

 toString is called whenever you concatenate
 a string with an object:

 Object.toString prints class name and the
 hash code of the object

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
// Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

"box=" + box;
// Result: "box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to something like "BankAccount@d24606bf" 22

Overriding the toString()
method

 To provide a nicer representation of an
object, override toString:

 This works better:

public String toString() {
 return "BankAccount[balance=" + balance + "]";
}

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to "BankAccount[balance=5000]"

23

The equals() method

 Tests for equal contents:

Figure 9:
Two References to
Equal Objects 24

The equals() method

 == tests for equal location

Figure 10:
Two References to the Same Object

5

25

Overriding equals()
 Define the equals method to test whether two

objects have equal state
 When redefining equals method, you cannot

change object signature; use a cast instead:

 (You should also override the hashCode method so
that equal objects have the same hash code)

public class Coin {
 . . .
 public boolean equals(Object otherObject) {
 Coin other = (Coin) otherObject;

 return name.equals(other.name) && value == other.value;
 }
 . . .
}

26

The clone() method

 Copying an object reference gives two
references to same object

 Sometimes, you need to make a copy of the
object

BankAccount account2 = account;

27

The clone() method

 Define clone method to make new object
(see Advanced Topic 13.6)

 Use clone:

 Must cast return value because return type is
Object

BankAccount clonedAccount = (BankAccount) account.clone();

28

The Object.clone() method

 Creates shallow copies

29

Object.clone()…
 Does not systematically clone all subobjects
 Must be used with caution
 It is declared as protected; prevents from

accidentally calling x.clone() if the class to
which x belongs hasn't redefined clone to be
public

 You should override the clone method with
care (see Advanced Topic 13.6)

30

Scripting Languages

 Integrated with software for purpose of
automating repetitive tasks

 Script: Very high-level, often short, program,
written in a high-level scripting language

 Scripting languages: Unix shells, Tcl, Perl,
Python, Ruby, Scheme, Rexx, JavaScript,
VisualBasic, ...

6

31

Characteristics of a script
 Glue other programs together
 Extensive text processing
 File and directory manipulation
 Often special-purpose code
 Many small interacting scripts may yield a big

system
 Perhaps a special-purpose GUI on top
 Portable across Unix, Windows, Mac
 Interpreted program (no compilation+linking)

32

Why Scripts?
 Features of Perl and Python compared with

Java, C/C++ and Fortran:
 shorter, more high-level programs
 much faster software development
 more convenient programming
 you feel more productive

 Reasons:
 no variable declarations, but lots of consistency

checks at run time
 lots of standardized libraries and tools

