
1

Chapter 15

Exception Handling

Chapter Goals

• To learn how to throw exceptions

• To be able to design your own exception
classes

• To understand the difference between
checked and unchecked exceptions

• To learn how to catch exceptions

• To know when and where to catch an
exception

Error Handling

• Traditional approach: Method returns error
code

• Problem: Forget to check for error code
 Failure notification may go undetected

• Problem: Calling method may not be able to
do anything about failure
 Program must fail too and let its caller worry about it
 Many method calls would need to be checked

Continued…

Error Handling

• Instead of programming for success

 you would always be programming for failure:

x.doSomething()

if (!x.doSomething()) return false;

Throwing Exceptions
• Exceptions:

 Can't be overlooked
 Sent directly to an exception handler–not just caller of

failed method

• Throw an exception object to signal an
exceptional condition

• Example: IllegalArgumentException:

Continued…

illegal parameter value
IllegalArgumentException exception
 = new IllegalArgumentException("Amount exceeds balance");
throw exception;

Throwing Exceptions

• No need to store exception object in a
variable:

• When an exception is thrown, method
terminates immediately
 Execution continues with an exception handler

throw new IllegalArgumentException("Amount exceeds balance");

2

Example
public class BankAccount
{
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 IllegalArgumentException exception
 = new IllegalArgumentException("Amount
 exceeds balance");
 throw exception;
 }
 balance = balance - amount;
 }
 . . .
}

Hierarchy of Exception Classes

Figure 1:
The Hierarchy of Exception Classes

Syntax 15.1: Throwing an Exception

 throw exceptionObject;

Example:
 throw new IllegalArgumentException();

Purpose:
To throw an exception and transfer control to a handler for this
exception type

Self Check

1. How should you modify the deposit
method to ensure that the balance is never
negative?

2. Suppose you construct a new bank account
object with a zero balance and then call
withdraw(10). What is the value of
balance afterwards?

Answers

1. Throw an exception if the amount being
deposited is less than zero.

2. The balance is still zero because the last
statement of the withdraw method was
never executed.

Checked and Unchecked Exceptions

• Two types of exceptions:
 Checked

• The compiler checks that you don't ignore them
• Due to external circumstances that the

programmer cannot prevent
• Majority occur when dealing with input and output
• For example, IOException

3

Checked and Unchecked Exceptions

• Two types of exceptions:
 Unchecked:

• Extend the class RuntimeException or Error
• They are the programmer's fault
• Examples of runtime exceptions:

• Example of error: OutOfMemoryError

NumberFormatException
IllegalArgumentException
NullPointerException

Checked and Unchecked Exceptions

• Categories aren't perfect:
 Scanner.nextInt throws unchecked
InputMismatchException

 Programmer cannot prevent users from entering
incorrect input

 This choice makes the class easy to use for beginning
programmers

• Deal with checked exceptions principally
when programming with files and streams

Continued…

Checked and Unchecked Exceptions

• For example, use a Scanner to read a file

But, FileReader constructor can throw a
FileNotFoundException

String filename = . . .;
FileReader reader = new FileReader(filename);
Scanner in = new Scanner(reader);

Checked and Unchecked Exceptions

• Two choices:
 Handle the exception
 Tell compiler that you want method to be terminated

when the exception occurs
• Use throws specifier so method can throw a

checked exception

public void read(String filename) throws FileNotFoundException
{
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 . . .
}

Continued…

Checked and Unchecked Exceptions

• For multiple exceptions:

• Keep in mind inheritance hierarchy:
If method can throw an IOException and
FileNotFoundException, only use
IOException

• Better to declare exception than to handle it
incompetently

public void read(String filename)
 throws IOException, ClassNotFoundException

Syntax 15.2: Exception Specification

accessSpecifier returnType
 methodName(parameterType parameterName, . . .)
 throws ExceptionClass, ExceptionClass, . . .

Example:
 public void read(BufferedReader in) throws IOException

Purpose:
To indicate the checked exceptions that this method can throw

4

Self Check

3. Suppose a method calls the FileReader
constructor and the read method of the
FileReader class, which can throw an
IOException. Which throws specification
should you use?

4. Why is a NullPointerException not a
checked exception?

Answer

3. The specification throws IOException is
sufficient because
FileNotFoundException is a subclass of
IOException.

4. Because programmers should simply check
for null pointers instead of trying to handle
a NullPointerException.

Catching Exceptions

• Install an exception handler with try/catch
 statement

• try block contains statements that may
 cause an exception

• catch clause contains handler for an
 exception type

Continued…

Catching Exceptions
• Example:
try
{
 String filename = . . .;
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader);
 String input = in.next();
 int value = Integer.parseInt(input);
 . . .
}
catch (IOException exception)
{
 exception.printStackTrace();
}
 catch (NumberFormatException exception)
{
 System.out.println("Input was not a number");
}

Catching Exceptions

• Statements in try block are executed

• If no exceptions occur, catch clauses are
skipped

• If exception of matching type occurs,
execution jumps to catch clause

• If exception of another type occurs, it is
thrown until it is caught by another try
block Continued…

Catching Exceptions

• catch (IOException exception) block
 exception contains reference to the exception

object that was thrown
 catch clause can analyze object to find out more

details
 exception.printStackTrace(): printout of

chain of method calls that lead to exception

5

Syntax 15.3: General Try Block
try
{
 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{
 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{
 statement
 statement
 . . .
}
. . .

Continued…

Syntax 15.3: General Try Block
Example:
 try
{
 System.out.println("How old are you?");
 int age = in.nextInt();
 System.out.println("Next year, you'll be " + (age + 1));
}
catch (InputMismatchException exception)
{
 exception.printStackTrace();
}

Purpose:
To execute one or more statements that may generate exceptions.
If an exception occurs and it matches one of the catch clauses,
execute the first one that matches. If no exception occurs, or an
exception is thrown that doesn't match any catch clause, then skip
the catch clauses.

Self Check

5. Suppose the file with the given file name
exists and has no contents. Trace the flow
of execution in the try block in this section.

6. Is there a difference between catching
checked and unchecked exceptions?

Answers

5. The FileReader constructor succeeds, and
in is constructed. Then the call in.next()
throws a NoSuchElementException, and the
try block is aborted. None of the catch
clauses match, so none are executed. If none
of the enclosing method calls catch the
exception, the program terminates.

Continued…

Answers

6. No–you catch both exception types in the
same way, as you can see from the code
example on page 558. Recall that
IOException is a checked exception and
NumberFormatException is an unchecked
exception.

The finally clause

• Exception terminates current method

• Danger: Can skip over essential code

• Example:

reader = new FileReader(filename);
Scanner in = new Scanner(reader);
readData(in);
reader.close();
// May never get here

6

The finally clause

• Must execute reader.close() even if
exception happens

• Use finally clause for code that must be
executed "no matter what"

The finally clause

FileReader reader = new FileReader(filename);
try
{
 Scanner in = new Scanner(reader);
 readData(in);
}
finally
{
 reader.close(); // if an exception occurs, finally clause
 // is also executed before exception is
 // passed to its handler
}

The finally clause

• Executed when try block is exited in any of
three ways:
 After last statement of try block
 After last statement of catch clause, if this try block

caught an exception
 When an exception was thrown in try block and not

caught

• Recommendation: don't mix catch and
finally clauses in same try block

Syntax 15.4: The finally clause
try
{
 statement
 statement
 . . .
}
finally
{
 statement
 statement
 . . .
} Continued…

Syntax 15.4: The finally clause
Example:
 FileReader reader = new FileReader(filename);
try
{
 readData(reader);
}
finally
{
 reader.close();
}

Purpose:
To ensure that the statements in the finally clause are executed
whether or not the statements in the try block throw an exception.

Self Check

7. Why was the reader variable declared
outside the try block?

8. Suppose the file with the given name does
not exist. Trace the flow of execution of the
code segment in this section.

7

Answers

7. If it had been declared inside the try block,
its scope would only have extended to the
end of the try block, and the catch clause
could not have closed it.

8. The FileReader constructor throws an
exception. The finally clause is executed.
Since reader is null, the call to close is
not executed. Next, a catch clause that
matches the FileNotFoundException is
located. If none exists, the program
terminates.

• You can design your own exception
types–subclasses of Exception or
RuntimeException

•

• Make it an unchecked
exception–programmer could have avoided it
by calling getBalance first

Designing Your Own Execution
Types

if (amount > balance)
{
 throw new InsufficientFundsException(
 "withdrawal of " + amount + " exceeds balance of
 “ + balance);
}

Continued…

• Make it an unchecked
exception–programmer could have avoided
it by calling getBalance first

• Extend RuntimeException or one of its
subclasses

• Supply two constructors
1. Default constructor
2. A constructor that accepts a message string

describing reason for exception

Designing Your Own Execution
Types

Designing Your Own Execution
Types
public class InsufficientFundsException
 extends RuntimeException
{
 public InsufficientFundsException() {}

 public InsufficientFundsException(String message)
 {
 super(message);
 }
}

Self Check

9. What is the purpose of the call
super(message) in the second
InsufficientFundsException
constructor?

10. Suppose you read bank account data from
a file. Contrary to your expectation, the
next input value is not of type double. You
decide to implement a BadDataException.
Which exception class should you extend?

Answers

9. To pass the exception message string to
 the RuntimeException superclass.

10. Exception or IOException are both
 good choices. Because file corruption is
 beyond the control of the programmer,
 this should be a checked exception, so it
 would be wrong to extend
 RuntimeException.

8

A Complete Program

• Program
 Asks user for name of file
 File expected to contain data values
 First line of file contains total number of values
 Remaining lines contain the data
 Typical input file:

3
1.45
 -2.1
0.05

A Complete Program

• What can go wrong?
 File might not exist
 File might have data in wrong format

• Who can detect the faults?
 FileReader constructor will throw an exception

when file does not exist
 Methods that process input need to throw exception if

they find error in data format

Continued…

A Complete Program

• What exceptions can be thrown?
 FileNotFoundException can be thrown by
FileReader constructor

 IOException can be thrown by close method of
FileReader

 BadDataException, a custom checked exception
class

Continued…

A Complete Program

• Who can remedy the faults that the
exceptions report?
 Only the main method of DataSetTester program

interacts with user
• Catches exceptions
• Prints appropriate error messages
• Gives user another chance to enter a correct file

File DataSetTester.java

01: import java.io.FileNotFoundException;
02: import java.io.IOException;
03: import java.util.Scanner;
04:
05: public class DataSetTester
06: {
07: public static void main(String[] args)
08: {
09: Scanner in = new Scanner(System.in);
10: DataSetReader reader = new DataSetReader();
11:
12: boolean done = false;
13: while (!done)
14: {
15: try
16: { Continued…

File DataSetTester.java

17: System.out.println("Please enter the file name: ");
18: String filename = in.next();
19:
20: double[] data = reader.readFile(filename);
21: double sum = 0;
22: for (double d : data) sum = sum + d;
23: System.out.println("The sum is " + sum);
24: done = true;
25: }
26: catch (FileNotFoundException exception)
27: {
28: System.out.println("File not found.");
29: }
30: catch (BadDataException exception)
31: {
32: System.out.println
 ("Bad data: " + exception.getMessage());

Continued…

9

File DataSetTester.java
33: }
34: catch (IOException exception)
35: {
36: exception.printStackTrace();
37: }
38: }
39: }
40: }

The readFile method of the
DataSetReader class

• Constructs Scanner object

• Calls readData method

• Completely unconcerned with any exceptions

Continued…

The readFile method of the
DataSetReader class

• If there is a problem with input file, it simply
passes the exception to caller

public double[] readFile(String filename)
 throws IOException, BadDataException
 // FileNotFoundException is an IOException
{
 FileReader reader = new FileReader(filename);
 try
 {
 Scanner in = new Scanner(reader);
 readData(in);
 } Continued…

The readFile method of the
DataSetReader class

 finally
 {
 reader.close();
 }
 return data;
}

The readFile method of the
DataSetReader class

• Reads the number of values

• Constructs an array

• Calls readValue for each data value

• Checks for two potential errors
 File might not start with an integer
 File might have additional data after reading all values

• Makes no attempt to catch any exceptions

private void readData(Scanner in) throws BadDataException
{
 if (!in.hasNextInt())
 throw new BadDataException("Length expected");
 int numberOfValues = in.nextInt();
 data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 readValue(in, i);

 if (in.hasNext())
 throw new BadDataException("End of file expected");
}

The readFile method of the
DataSetReader class

• Checks for two potential errors
File might not start with an integer
File might have additional data after reading all

values

• Makes no attempt to catch any exceptions

10

The readFile method of the
DataSetReader class

private void readValue(Scanner in, int i)
 throws BadDataException
{

 if (!in.hasNextDouble())
 throw new BadDataException("Data value expected");
 data[i] = in.nextDouble();
}

Scenario

1. DataSetTester.main calls
 DataSetReader.readFile

2. readFile calls readData

3. readData calls readValue

4. readValue doesn't find expected value
 and throws BadDataException

5. readValue has no handler for exception
 and terminates

Continued…

Scenario

6. readData has no handler for exception
 and terminates

7. readFile has no handler for exception
 and terminates after executing finally
 clause

8. DataSetTester.main has handler for
 BadDataException; handler prints a
 message, and user is given another chance
 to enter file name

File DataSetReader.java
01: import java.io.FileReader;
02: import java.io.IOException;
03: import java.util.Scanner;
04:
05: /**
06: Reads a data set from a file. The file must have
 // the format
07: numberOfValues
08: value1
09: value2
10: . . .
11: */
12: public class DataSetReader
13: { Continued…

File DataSetReader.java
14: /**
15: Reads a data set.
16: @param filename the name of the file holding the data
17: @return the data in the file
18: */
19: public double[] readFile(String filename)
20: throws IOException, BadDataException
21: {
22: FileReader reader = new FileReader(filename);
23: try
24: {
25: Scanner in = new Scanner(reader);
26: readData(in);
27: }
28: finally
29: {
30: reader.close();
31: } Continued…

File DataSetReader.java

32: return data;
33: }
34:
35: /**
36: Reads all data.
37: @param in the scanner that scans the data
38: */
39: private void readData(Scanner in) throws BadDataException
40: {
41: if (!in.hasNextInt())
42: throw new BadDataException("Length expected");
43: int numberOfValues = in.nextInt();
44: data = new double[numberOfValues];
45:
46: for (int i = 0; i < numberOfValues; i++)
47: readValue(in, i);

Continued…

11

File DataSetReader.java

48:
49: if (in.hasNext())
50: throw new BadDataException("End of file expected");
51: }
52:
53: /**
54: Reads one data value.
55: @param in the scanner that scans the data
56: @param i the position of the value to read
57: */
58: private void readValue(Scanner in, int i)
 throws BadDataException
59: { Continued…

File DataSetReader.java
60: if (!in.hasNextDouble())
61: throw new BadDataException("Data value expected");
62: data[i] = in.nextDouble();
63: }
64:
65: private double[] data;
66: }

Self Check

11. Why doesn't the
DataSetReader.readFile method catch
any exceptions?

12. Suppose the user specifies a file that
exists and is empty. Trace the flow of
execution.

Answers

11. It would not be able to do much with them.
The DataSetReader class is a reusable
class that may be used for systems with
different languages and different user
interfaces. Thus, it cannot engage in a
dialog with the program user.

Continued…

Answers

12. DataSetTester.main calls
 DataSetReader.readFile, which calls
 readData. The call in.hasNextInt()
 returns false, and readData throws a
 BadDataException. The readFile
 method doesn't catch it, so it propagates
 back to main, where it is caught.

