Program Correctness

- Preventive Measures
+ Testing
+ Error Handling

Kinds of Errors

* Syntax errors
* Runtime errors ("exceptions")
* Logic errors

Syntax Errors

* Mistakes in use of Java syntax (grammar)
- Incorrect brackets, parentheses
- Incorrect type of operation on values
- Not declaring variable before its use
- Multiple declarations for a variable
- Not returning a value from non-void method
- Typographical errors

* Most often caught by compiler

Runtime Errors

+ Occur during program execution
+ Table 2.1

— ArithmeticException

— ArrayIndexOutOfBoundsException
- IllegalArgumentException

— NumberFormatException

— NullPointerException

— NoSuchElementException

Division by Zero

average = sum / count;

* Guarding against division by zero:

if (count == Q)
average = 0;
else
average = sum / count;




Array Index Out of Bounds

public boolean setElementOfX( int index, int val ) {
if ( index < @ || index >= x.length )
return false;
x[index] = value;
return true;

}

public static void main( String[] args ) {
String inputFileName;
if ( args.length > 0 )
inputFileName = args[@];
else
inputFileName = "Phone.dat";

Number Format Error

String speedStr =
JOptionPane.showInputDialog( "Enter speed" );
double speed = Double.parseDouble( speedStr );

Logic Errors

+ Mistake in design of class/method
+ Incorrect implementation of algorithm

// page 40
private int find( String name ) {
for (int 1 = 0; i < size; i++ ) {
if ( dir[i].getName().equals( name ) )
return i;
else
return -1;

Logic Errors in the News

« Mars Lander crash - feet/meters
inconsistency

ATM/billing program errors
Operating system exploits
+ Therac x-ray dosage software

+ Jet fighter flips upside down
crossing equator

Eliminating Logic Errors

* Reduce logic errors by
- Careful initial design
- Follow-up design analysis and checking
- Program code testing
- Formal methods and reasoning

Exceptions in Java

* When runtime error/exception happens, an
Exception object is instantiated and
“thrown"

® Throwable: superclass of all exceptions

- Common methods:
® String getMessage()
e void printStackTrace()
e String toString()




Two Types of Exceptions

+ Checked
- Usually not programmer error
- Must be handled in some way
* Unchecked

- Error conditions due to programmer, or,
serious external unrecoverable conditions

- Not required (even, discouraged) from handling
these

- Subclasses of RuntimeException or Error classes

13

Exception Class Hierarchy

—
= e
‘\:ﬁ* =
o) L T
S S
(]
{ e |
k]

Handling Exceptions

+ Default behavior:
- Program stops executing
- JVM prints error message and stack trace

- Stack trace: sequence of method calls
from method causing exception back to
the main method

try-catch Sequence

Method to return an integer data value

@param prompt Message

@return The data value read as an int

*/

public static int readInt( String prompt ) {
while ( true ) { // loop until valid number read
try {

String numStr = JOptionPane.showInputDialog( prompt );
return Integer.parseInt( numStr );

catch ( NumberFormatException ex ) {
JOptionPane.showMessageDialog( null,
"Bad numeric string - Try again",
"Error",
JOptionPane. ERROR_MESSAGE );

try-catch-finally Sequence

public static int readIntTwo( String prompt ) {
String numStr = JOptionPane.showInputDialog( prompt );
return Integer.parseInt( numStr );

3

public static void main( String[] args ) {
final int DEFAULT_SIZE = 25;
final int MAX_SIZE = 100;
int size = 0;
try {
size = readIntTwo( "Enter new size" );

catch ( Exception ex ) {
System.err.println( "Error occurred in call to readIntTwo" );
size = DEFAULT_SIZE;
}
finally {
if ( size > MAX_SIZE )
size = MAX_SIZE;
System.out.println( "Read size: " + size );

System.exit( @ );

Handling Exception Subclasses

catch ( EOFException ex ) {
System.out.print( "End of file reached " );
System.out.println( " - processing complete" );
System.exit( @ );

catch ( IOException ex ) {
System.err.println( "Input/Output Error:" );
ex.printStackTrace();
System.exit( 1 );




More on Exceptions

+ try-catch-finally Syntax: pg 74-75

+ Look over:
- Pitfall pg. 76
- Program style pg. 76

Throwing Exceptions

- Instead of immediately handling an
exception, a method may ‘throw' it to a
higher-level method in the stack

+ Or, you may instantiate the exception
object yourself and ‘throw' it

20

The throws Clause

public void readData() throws IOException {
BufferedReader console = new BufferedReader(
new InputStreamReader( System.in ) );

System.out.print( "Enter first name: " );
firstName = console.readlLine();
System.out.print( "Enter last name: " );

lastName = console.readlLine();

}
public void setNewPerson() {
try {

readData(Q);
// process data read

}
catch ( IOException ex ) {

3

The throw Statement

public String addOrChangeEntry( String name, String number ) {
if (! isPhoneNumberFormat( number ) )
throw new IllegalArgumentException
(C "Invalid phone number: " + number );

)}Aqdd or change the number

ry {
addOrChangeEntry( myName, myNumber );

catch ( IllegalArgumentException ex ) {
System.err.println( ex.getMessage() );

22

More on Throwing Exceptions

+ Syntax: page 80
+ Example 2.10
- Style: page 84

Handling Logic Errors

Logic (Semantic) errors can be difficult to

detect and isolate

Best situation

- Logic error is in part of code that always
executes

Worst situation

- Error is in obscure piece of code that doesn't
always execute

- Testing may miss this code - software will be
delivered with hidden defect

24




Structured Walkthroughs

* Hand-checking algorithm by simulating its
execution before implementing any code
+ Done together with others in a feam

- Because designer may anticipate steps that
don't actually happen that way

- Effective process in industrial experience

Levels of Testing

+ Unit testing - testing smallest testable piece of

software (in OOD, method or class)

+ Integration testing - testing interaction among

units (e.g. interactions between classes)

+ System testing - testing whole program in
context it will be used (other programs/hardware)

+ Acceptance testing - show program meets all
functional requirements

26

Types of Testing

+ Black-box testing

- Test an item (method/class/program) based on
its interfaces and functional
specifications/requirements

- Also called closed-box or functional testing
+ White-box testing

- Test a software element with knowledge of its
internal structure (i.e. implementation)

- Exercise as many paths as possible

- Also called glass-box, open-box, or coverage
27

Example - Path Coverage

public void someMethod( char a, char b ) {
if Ca<'M' ) {
if (b < 'X")
System.out.println( "path 1" );
else
System.out.println( "path 2" );
} else {
if (b<'C")
System.out.println( "path 3" J;
else
System.out.println( "path 4" );

28

Testing Tips

- Developing test plan

- Defensive programming

+ Documentation comments

+ Trace execution using print statements
+ Test data

* Boundary conditions

+ Look over pages 88-90
* ArraySearch.java

Test Cases

+ SinCos. java

30




Assertions and Loop Invariants

+ Section 2.7

Algorithmic Efficiency

public static int search( int[] x, int target ) {
for (int i = 0; i < x.length; i++ )
if ( x[i] == target ) return i;
// target not found
return -1;

public static boolean areDifferent( int[] x, int[Jy ) {
for (int i = 0; i < x.length; i++ )
if ( search(y, x[i]) != -1 ) return false;
return true;

32

Algorithmic Efficiency (cont.)

public static boolean areUnique( int[] x ) {
for (int i = 0; i < x.length; i++ )
for C int j = 0; j < x.length; j++ )
if (i !=3 & x[i] == x[3]1 )
return false;
return true;

public static boolean areUnique( int[] x ) {
for (int i = 0; i < x.length; i++ )
for Cint j =1+ 1; j < x.length; j++ )
if ( x[i] == x[31 D)
return false;
return true;

Running Time

Most algorithms
transform input objects Dlbest case
into output objects overage case
The running time of an
algorithm typically grows
with the input size
Average case time is often
difficult to determine
We focus on the worst
case running time 1000 2000 3000 000
- Easier to analyze Input size
- Crucial to applications
such as games, finance
and robotics

Running Time

34

Experimental Studies

Write a program

implementing the sooo
algorithm 7000
Run the program with T
inputs of varying size % so00
and composition = 3000
Use a method like .
System.currentTimeMillis() o

to get an accurate
measure of the actual
running time

Plot the results 3

Input Size

Limitations of Experiments

+ Tt is necessary to implement the

algorithm, which may be difficult

+ Results may not be indicative of the

running time on other inputs not included
in the experiment

+ Inorder to compare two algorithms, the

same hardware and software environments
must be used

36




Theoretical Ana \

Uses a high-level description of the

algorithm instead of an implementation
Characterizes running time as a function

of the input size, n.

Takes into account all possible inputs
Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Pseudocode
. High—l_evgl Example: find max
description of an element of an array
algorithm

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of 4

+ More structured
than English prose

+ Less detailed than
currentMax < A[0]

@ program i fori< 1ton-1do

* Preferred notation if A[i] > currentMax then
for d_escr'ib"ng currentMax < A[i)
algorithms return currentMax

+ Hides program
design issues
38

Primitive Operations

Basic computations
performed by an algorithm
Identifiable in pseudocode

Largely independent from
the programming language
Exact definition not
important (we will see why
later)

Assumed to take a
constant amount of time
to execute

Examples:

Evaluating an
expression

- Assigning a value to
a variable

Indexing into an
array

- Calling a method

Returning from a
method

Counting Primitive Operations

By inspecting the (pseudo)code, we determine the
maximum number of primitive operations
executed by an algorithm, as a function of the
input size

Algorithm arrayMax(A, n) # operations
currentMax < A[0] 2
fori< 1ton-1do 2n
if A[i] > currentMax then 2(n-1)
currentMax < A[i] 2(n-1)
{ increment counter i } 2(n-1)
return currentMax 1
40
Total 8n -2

Growth Rate of Running Time

Changing the hardware/ software

environment

- Affects T(n) by a constant factor, but

- Does not alter the growth rate of T(n)

The linear growth rate of the running time
T(n) is an intrinsic property of algorithm

arrayMax

4

Constant Factors

+ The growth rateis
not affected by L A e————cae

1E+20 - Linear
- constant factors or  1E+1s ——uner

1E+16

- lower-order terms & !ttt

1E+12
1E+10

- Examples I
1E+6 [
- 1022 + 105 is a linear 153
function 10

IE+0  1E+2  1E+4 1E+6 1E+8 1E+10
n

- 10°n? + 10%n is a
quadratic function

42




Big-Oh Notation

- Upper bound on the growth rate of a
function (running time or memory)
- "0()": 'order of magnitude’
+ To say “f(n) is O(g(n))" is to say that
f(n) is “less than or equal to" g(n)

* More precisely, given functions fin) and
g(n), we say that fln) is O(g(n)) if there are
positive constants ¢ and n, such that

f(n) < cg(n) forallnz=n,

43

Big-Oh Example

2n + 10 is O(n)

- 2n+10=cn
10,000

- (c-2)n=10 - 3n
- n=10/(c-2)
- Pick c =3 and ny=10

1,000 — 2n+10

—n

100

+ Remember, ¢ must 10 =

be a constant

1 10 100

44

1,000

More Big-Oh Examples
+ 7n-2
7n-2 is O(n)
need c > 0 and ny = 1 such that 7n-2 < cen forn = n,
this is true forc =7 and n, = 1

+ 3n3+20n2+5
3n3 +20n2 + 5is O(n3)
need ¢ > 0 and ng = 1 such that 3n3 + 20n2 + 5 < cen3 for n = ny
this is true for c = 4 and ny = 21
*+ 3logn+5
3log n + 5is O(log n)
needc > 0and ny = 1 such that3logn + 5 < celog n for n = n,

this is true for c = 8 and ny = 2
45

Seven Important Functions

Seven functions that
1E430

often appear in algorithm jrien Cuvic
analysis: T [ — Quadratic
- Constant ~ 1

1E420 (— —
LE+IS

1522 — Linear
Logarithmic ~ log n 1E+16

1E+14

T

- Linear~n 1E+12
- N-Log-N=~nlogn e
- Quadratic ~ n2 i
- Cubic = n? e

Exponential = 20 B0 B2 IBd B B
Inalog-log chart, the

slope of the line

corresponds to the growth 46
rate of the function

1E+10

Simple Rules for Big-Oh

- If is fln) a polynomial of degree d, then f(n)
is O(nY), ie.,
- Drop lower-order terms
- Drop constant factors

+ Use the smallest possible class of
functions
- Say "2n is O(n)" instead of “2n is O(n?)"

- Use the simplest expression of the class
- Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

47

Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm
determines the running time in big-Oh notation
To perform the asymptotic analysis

- We find the worst-case number of primitive operations
executed as a function of the input size

- We express this function with big-Oh notation
Example:
- We determine that algorithm arrayMax executes at most
8n - 2 primitive operations
- We say that algorithm arrayMax “runs in O(n) time"
Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard

them when counting primitive operations °




Using Big-Oh

+ The big-Oh notation expresses a
relationship between functions. It does
not say what the functions are.

* Big-Oh does not just refer o the worst-
case running time

- binary search on an array,
+ the worst-case running time is in O(log n),
+ the best-case running time is in O(1), and
+ the memory use is in O(n)

49

More Caveats

Beware huge coefficients

- 10'%n is O(n) and probably not as useful in
practice as 10n log n

Beware key lower order terms
Beware when n is “small”

Generally speaking, algorithms running in
O(n log n) time or faster can be

considered “efficient”

- Even n? may be reasonable if nis small 50

Does it matter?
Let n=1,000, and 1 ms / operation.

n=1000, 1 ms/op max 7 in one day
n 1 second 86,400,000
nlog, n 10 seconds 3,943,234
” 17 minutes 9,295
” 12 days 442
nt 32 years 96
o 3.17 x 10 years 6
2n 1.07 x 103! years 26




