
1

1

Data Structures and
Algorithms

Prof. Nadeem Abdul Hamid
CSC 220 - Fall 2005

Lecture Unit 2 - Correctness and Efficiency 2

Program Correctness

• Preventive Measures
• Testing
• Error Handling

3

Kinds of Errors

• Syntax errors
• Runtime errors (“exceptions”)
• Logic errors

4

Syntax Errors

• Mistakes in use of Java syntax (grammar)
– Incorrect brackets, parentheses
– Incorrect type of operation on values
– Not declaring variable before its use
– Multiple declarations for a variable
– Not returning a value from non-void method
– Typographical errors
– …

• Most often caught by compiler

5

Runtime Errors

• Occur during program execution
• Table 2.1

– ArithmeticException
– ArrayIndexOutOfBoundsException
– IllegalArgumentException
– NumberFormatException
– NullPointerException
– NoSuchElementException
– …

6

Division by Zero

average = sum / count;

• Guarding against division by zero:

if (count == 0)
average = 0;

else
average = sum / count;

2

7

Array Index Out of Bounds

public boolean setElementOfX(int index, int val) {
if (index < 0 || index >= x.length)

return false;
x[index] = value;
return true;

}

public static void main(String[] args) {
String inputFileName;
if (args.length > 0)

inputFileName = args[0];
else

inputFileName = "Phone.dat";
}

8

Number Format Error

String speedStr =
JOptionPane.showInputDialog("Enter speed");

double speed = Double.parseDouble(speedStr);

9

Logic Errors

• Mistake in design of class/method
• Incorrect implementation of algorithm

// page 40
private int find(String name) {

for (int i = 0; i < size; i++) {
if (dir[i].getName().equals(name))
 return i;
else
 return -1;

}
}

10

Logic Errors in the News

• Mars Lander crash - feet/meters
inconsistency

• ATM/billing program errors
• Operating system exploits
• Therac x-ray dosage software
• Jet fighter flips upside down

crossing equator

11

Eliminating Logic Errors

• Reduce logic errors by
– Careful initial design
– Follow-up design analysis and checking
– Program code testing
– Formal methods and reasoning

12

Exceptions in Java

• When runtime error/exception happens, an
Exception object is instantiated and
“thrown”

• Throwable: superclass of all exceptions
– Common methods:

• String getMessage()
• void printStackTrace()
• String toString()

3

13

Two Types of Exceptions

• Checked
– Usually not programmer error
– Must be handled in some way

• Unchecked
– Error conditions due to programmer, or,

serious external unrecoverable conditions
– Not required (even, discouraged) from handling

these
– Subclasses of RuntimeException or Error classes

14

Exception Class Hierarchy

15

Handling Exceptions

• Default behavior:
– Program stops executing
– JVM prints error message and stack trace

• Stack trace: sequence of method calls
from method causing exception back to
the main method

16

try-catch Sequence

 /**
 Method to return an integer data value
 @param prompt Message
 @return The data value read as an int
 */
 public static int readInt(String prompt) {
 while (true) { // loop until valid number read
 try {
 String numStr = JOptionPane.showInputDialog(prompt);
 return Integer.parseInt(numStr);
 }
 catch (NumberFormatException ex) {
 JOptionPane.showMessageDialog(null,
 "Bad numeric string - Try again",
 "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }

17

try-catch-finally Sequence
 public static int readIntTwo(String prompt) {
 String numStr = JOptionPane.showInputDialog(prompt);
 return Integer.parseInt(numStr);
 }

 public static void main(String[] args) {
 final int DEFAULT_SIZE = 25;
 final int MAX_SIZE = 100;
 int size = 0;
 try {
 size = readIntTwo("Enter new size");
 }
 catch (Exception ex) {
 System.err.println("Error occurred in call to readIntTwo");
 size = DEFAULT_SIZE;
 }
 finally {
 if (size > MAX_SIZE)
 size = MAX_SIZE;
 }
 System.out.println("Read size: " + size);

 System.exit(0);
 }
}

18

 .
 .
 .
 catch (EOFException ex) {
 System.out.print("End of file reached ");
 System.out.println(" - processing complete");
 System.exit(0);
 }
 catch (IOException ex) {
 System.err.println("Input/Output Error:");
 ex.printStackTrace();
 System.exit(1);
 }

Handling Exception Subclasses

4

19

More on Exceptions

• try-catch-finally Syntax: pg 74-75

• Look over:
– Pitfall pg. 76
– Program style pg. 76

20

Throwing Exceptions

• Instead of immediately handling an
exception, a method may ‘throw’ it to a
higher-level method in the stack

• Or, you may instantiate the exception
object yourself and ‘throw’ it

21

The throws Clause
public void readData() throws IOException {
 BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter first name: ");
 firstName = console.readLine();
 System.out.print("Enter last name: ");
 lastName = console.readLine();
 ...
}

public void setNewPerson() {
 try {
 readData();
 // process data read
 ...
 }
 catch (IOException ex) {
 ...
 }

}
22

The throw Statement

public String addOrChangeEntry(String name, String number) {
 if (! isPhoneNumberFormat(number))
 throw new IllegalArgumentException
 ("Invalid phone number: " + number);
 ...
 // add or change the number
}

...

 try {
 addOrChangeEntry(myName, myNumber);
 }
 catch (IllegalArgumentException ex) {
 System.err.println(ex.getMessage());
 }

23

More on Throwing Exceptions

• Syntax: page 80
• Example 2.10
• Style: page 84

24

Handling Logic Errors

• Logic (Semantic) errors can be difficult to
detect and isolate

• Best situation
– Logic error is in part of code that always

executes

• Worst situation
– Error is in obscure piece of code that doesn’t

always execute
– Testing may miss this code - software will be

delivered with hidden defect

5

25

Structured Walkthroughs

• Hand-checking algorithm by simulating its
execution before implementing any code

• Done together with others in a team
– Because designer may anticipate steps that

don’t actually happen that way

• Effective process in industrial experience

26

Levels of Testing

• Unit testing - testing smallest testable piece of
software (in OOD, method or class)

• Integration testing - testing interaction among
units (e.g. interactions between classes)

• System testing - testing whole program in
context it will be used (other programs/hardware)

• Acceptance testing - show program meets all
functional requirements

27

Types of Testing

• Black-box testing
– Test an item (method/class/program) based on

its interfaces and functional
specifications/requirements

– Also called closed-box or functional testing

• White-box testing
– Test a software element with knowledge of its

internal structure (i.e. implementation)
– Exercise as many paths as possible
– Also called glass-box, open-box, or coverage

28

Example - Path Coverage

public void someMethod(char a, char b) {
 if (a < 'M') {
 if (b < 'X')
 System.out.println("path 1");
 else
 System.out.println("path 2");
 } else {
 if (b < 'C')
 System.out.println("path 3");
 else
 System.out.println("path 4");
 }
}

29

Testing Tips

• Developing test plan
• Defensive programming
• Documentation comments
• Trace execution using print statements
• Test data
• Boundary conditions

• Look over pages 88-90
• ArraySearch.java

30

Test Cases

• SinCos.java

6

31

Assertions and Loop Invariants

• Section 2.7

32

Algorithmic Efficiency

public static int search(int[] x, int target) {
 for (int i = 0; i < x.length; i++)
 if (x[i] == target) return i;
 // target not found
 return -1;
}

public static boolean areDifferent(int[] x, int[] y) {
 for (int i = 0; i < x.length; i++)
 if (search(y, x[i]) != -1) return false;
 return true;
}

33

Algorithmic Efficiency (cont.)

public static boolean areUnique(int[] x) {
 for (int i = 0; i < x.length; i++)
 for (int j = 0; j < x.length; j++)
 if (i != j && x[i] == x[j])
 return false;
 return true;
}

public static boolean areUnique(int[] x) {
 for (int i = 0; i < x.length; i++)
 for (int j = i + 1; j < x.length; j++)
 if (x[i] == x[j])
 return false;
 return true;
}

34

Running Time
• Most algorithms

transform input objects
into output objects

• The running time of an
algorithm typically grows
with the input size

• Average case time is often
difficult to determine

• We focus on the worst
case running time
– Easier to analyze
– Crucial to applications

such as games, finance
and robotics

35

Experimental Studies

• Write a program
implementing the
algorithm

• Run the program with
inputs of varying size
and composition

• Use a method like
System.currentTimeMillis()
to get an accurate
measure of the actual
running time

• Plot the results 36

Limitations of Experiments

• It is necessary to implement the
algorithm, which may be difficult

• Results may not be indicative of the
running time on other inputs not included
in the experiment

• In order to compare two algorithms, the
same hardware and software environments
must be used

7

37

Theoretical Analysis

• Uses a high-level description of the
algorithm instead of an implementation

• Characterizes running time as a function
of the input size, n.

• Takes into account all possible inputs
• Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

38

Pseudocode
• High-level

description of an
algorithm

• More structured
than English prose

• Less detailed than
a program

• Preferred notation
for describing
algorithms

• Hides program
design issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max
element of an array

39

Primitive Operations

• Basic computations
performed by an algorithm

• Identifiable in pseudocode
• Largely independent from

the programming language
• Exact definition not

important (we will see why
later)

• Assumed to take a
constant amount of time
to execute

• Examples:
– Evaluating an

expression
– Assigning a value to

a variable
– Indexing into an

array
– Calling a method
– Returning from a

method

40

Counting Primitive Operations

• By inspecting the (pseudo)code, we determine the
maximum number of primitive operations
executed by an algorithm, as a function of the
input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 8n − 2

41

Growth Rate of Running Time

• Changing the hardware/ software
environment
– Affects T(n) by a constant factor, but
– Does not alter the growth rate of T(n)

• The linear growth rate of the running time
T(n) is an intrinsic property of algorithm
arrayMax

42

Constant Factors
• The growth rate is

not affected by
– constant factors or
– lower-order terms

• Examples
– 102n + 105 is a linear

function
– 105n2 + 108n is a

quadratic function

8

43

Big-Oh Notation

• Upper bound on the growth rate of a
function (running time or memory)
– “O() ”: ‘order of magnitude’

• To say “f(n) is O(g(n))” is to say that
f(n) is “less than or equal to” g(n)

• More precisely, given functions f(n) and
g(n), we say that f(n) is O(g(n)) if there are
positive constants c and n0 such that

f(n) ≤ cg(n) for all n ≥ n0
44

Big-Oh Example

• 2n + 10 is O(n)
– 2n + 10 ≤ cn
– (c − 2) n ≥ 10
– n ≥ 10/(c − 2)

– Pick c = 3 and n0 = 10

• Remember, c must
be a constant

45

More Big-Oh Examples
• 7n – 2

• 3n3 + 20n2 + 5

• 3 log n + 5

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
46

Seven Important Functions

• Seven functions that
often appear in algorithm
analysis:
– Constant ≈ 1
– Logarithmic ≈ log n
– Linear ≈ n
– N-Log-N ≈ n log n
– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

• In a log-log chart, the
slope of the line
corresponds to the growth
rate of the function

47

Simple Rules for Big-Oh

• If is f(n) a polynomial of degree d, then f(n)
is O(nd), i.e.,
– Drop lower-order terms
– Drop constant factors

• Use the smallest possible class of
functions
– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

48

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm
determines the running time in big-Oh notation

• To perform the asymptotic analysis
– We find the worst-case number of primitive operations

executed as a function of the input size
– We express this function with big-Oh notation

• Example:
– We determine that algorithm arrayMax executes at most

8n − 2 primitive operations
– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard
them when counting primitive operations

9

49

Using Big-Oh

• The big-Oh notation expresses a
relationship between functions. It does
not say what the functions are.

• Big-Oh does not just refer to the worst-
case running time
– binary search on an array,

• the worst-case running time is in O(log n),
• the best-case running time is in O(1), and
• the memory use is in O(n)

50

More Caveats

• Beware huge coefficients
– 10100n is O(n) and probably not as useful in

practice as 10n log n
• Beware key lower order terms
• Beware when n is “small”

• Generally speaking, algorithms running in
O(n log n) time or faster can be
considered “efficient”
– Even n2 may be reasonable if n is small

51

Does it matter?
Let n = 1,000, and 1 ms / operation.

9632 yearsn4

3,943,23410 secondsn log2 n

1.07 × 10301 years

3.17 × 1019 years

12 days

17 minutes

1 second

n = 1000, 1 ms/op

26

6

442

9,295

86,400,000

max n in one day

n

2n

n10

n3

n2

