
1

1

Data Structures and
Algorithms

Prof. Nadeem Abdul Hamid
CSC 220 - Fall 2005

Lecture Unit 3 - Inheritance 2

Inheritance

• Besides reusing existing classes for new
applications, OOP allows definition of new
classes that extend existing ones to
provide additional functionality

• Subclass inherits data fields and methods
of the superclass

• In Java, all classes part of inheritance
hierarchy

• Class Object is the superclass of all Java
classes

3

Class Hierarchy

4

Is-A vs. Has-A Relationships

• “Jet plane is an airplane”
– JetPlane class will extend Airplane

• “Jet plane has a jet engine”
– JetPlane class will have a JetEngine field

public class JetPlane extends Airplane {
 private JetEngine[] jets;
 ...
}

5

Superclass/Subclass Example
/** Class that represents a computer.
 * @author Koffman & Wolfgang
 * */
public class Computer {
 // Data Fields
 private String manufacturer;
 private String processor;
 private int ramSize;
 private int diskSize;

 // Methods
 /** Initializes a Computer object with all properties specified.
 @param man The computer manufacturer
 @param processor The processor type
 @param ram The RAM size
 @param disk The disk size
 */
 public Computer(String man, String processor, int ram, int disk) {
 manufacturer = man;
 this.processor = processor;
 ramSize = ram;
 diskSize = disk;
 }

// Insert other accessor and modifier methods here.

 public String toString() {
 String result = "Manufacturer: " + manufacturer +
 "\nCPU: " + processor +
 "\nRAM: " + ramSize + " megabytes" +
 "\nDisk: " + diskSize + " gigabytes";
 return result;
 }
}

6

Subclass - Laptop
/** Class that represents a lap top computer.
 * @author Koffman & Wolfgang
 * */

public class LapTop
 extends Computer {
 // Data Fields
 private static final String DEFAULT_LT_MAN = "MyBrand";
 private double screenSize;
 private double weight;

 /** Initializes a LapTop object with all properties specified.
 @param man The computer manufacturer
 @param proc The processor type
 @param ram The RAM size
 @param disk The disk size
 @param screen The screen size
 @param wei The weight
 */
 public LapTop(String man, String proc, int ram, int disk,
 double screen, double wei) {
 super(man, proc, ram, disk);
 screenSize = screen;
 weight = wei;
 }

}

2

7

Inheritance Issues

• Use of this.
• Initializing data fields in subclass
• Use of super()
• No-parameter constructor
• protected visibility

8

Method Overriding
public class TestComputerAndLaptop {

 /** Tests classes Computer and LapTop. Creates an object of each and
 displays them.
 @param args[] No control parameters
 @author Koffman & Wolfgang
 */
 public static void main(String[] args) {
 Computer myComputer = new Computer("Acme", "Intel P4 2.4", 512, 60);
 LapTop yourComputer = new LapTop("DellGate", "AMD Athlon 2000", 256, 40,
 15.0, 7.5);
 System.out.println("My computer is:\n" + myComputer.toString());
 System.out.println("\nYour computer is:\n" +
 yourComputer.toString());
 }
} My computer is:

Manufacturer: Acme
CPU: Intel P4 2.4
RAM: 512 megabytes
Disk: 60 gigabytes

Your computer is:
Manufacturer: DellGate
CPU: AMD Athlon 2000
RAM: 256 megabytes
Disk: 40 gigabytes

9

Method Overriding

• In the Laptop class:
 public String toString() {
 String result = super.toString()
 + "\nScreen size: " + screenSize + " inches"
 + "\nWeight: " + weight + " pounds";
 return result;
 }

My computer is:
Manufacturer: Acme
CPU: Intel P4 2.4
RAM: 512 megabytes
Disk: 60 gigabytes

Your computer is:
Manufacturer: DellGate
CPU: AMD Athlon 2000
RAM: 256 megabytes
Disk: 40 gigabytes
Screen size: 15.0 inches
Weight: 7.5 pounds 10

Method Overloading

 /** Initializes a LapTop object with all properties specified.
 @param man The computer manufacturer
 @param proc The processor type
 @param ram The RAM size
 @param disk The disk size
 @param screen The screen size
 @param wei The weight
 */
 public LapTop(String man, String proc, int ram, int disk,
 double screen, double wei) {
 super(man, proc, ram, disk);
 screenSize = screen;
 weight = wei;
 }

 /** Initializes a LapTop object with 5 properties specified. */
 public LapTop(String proc, int ram, int disk,
 double screen, double wei) {
 this(DEFAULT_LT_MAN, proc, ram, disk, screen, wei);
 }

11

Polymorphism

• Important feature of OOP languages
• Object variable may contain reference to the specified

class, or any subclass thereof
• Enables JVM to determine which (overridden) method to

invoke at runtime based on type of the object reference

Computer comp[] = new Computer[3];
comp[0] = new Computer("Acme", "Intel P4 2.4", 512, 60);
comp[1] = new LapTop("DellGate", "AMD Athlon 2000", 256, 40,
 15.0, 7.5);
comp[2] = comp[0];
...
for (int i = 0; i < comp.length; i++)
 System.out.println("Computer " + (i+1) + ": \n"
 + comp[i]); 12

Abstract Classes

• Can declare abstract methods like an
interface, which must be
implemented by subclasses

• Cannot be instantiated

• Can have field definitions and
method bodies

3

13

Summary Table

14

Multiple Inheritance

• Multiple inheritance: the ability to extend
more than one class

• Multiple inheritance is a language feature
that is difficult to implement and can lead
to ambiguity
– Therefore, Java does not allow a class to

extend more than one class

15

Using Multiple Interfaces

• If we define two interfaces, a class can
implement both

• Multiple interfaces emulate multiple inheritance

16

Implementing Reuse Through
Delegation

• You can reduce duplication of modifications and
reduce problems associated with version control
through a technique known as delegation

• In delegation, a method of one class accomplishes
an operation by delegating it to a method of
another class

17

Packages

• The Java API is organized into packages
• The package to which a class belongs is declared

by the first statement in the file in which the
class is defined using the keyword package
followed by the package name

• All classes in the same package are stored in the
same directory or folder

• All the classes in one folder must declare
themselves to be in the same package

• Classes that are not part of a package may access
only public members of classes in the package

18

The No-Package-Declared
Environment and Package Visibility

• There exists a default package
– Files that do specify a package are considered part of

the default package

• If you don’t declare packages, all of your
packages belong to the same, default package

• Package visibility sits between private and
protected

• Classes, data fields, and methods with package visibility
are accessible to all other methods of the same package
but are not accessible to methods outside of the package

• Classes, data fields, and methods that are declared
protected are visible to all members of the package

4

19

Visibility (Access Controls)

