Inheritance

Besides reusing existing classes for new
applications, OOP allows definition of new
classes that extend existing ones to
provide additional functionality

Subclass inherits data fields and methods
of the superclass

In Java, all classes part of inheritance
hierarchy

Class Object is the superclass of all Java
classes

Class Hierarchy Is-A vs. Has-A Relationships

Summaty of Exception Class Hisrarchy

+ “Jet plane is an airplane”
- JetPlane class will extend Airplane
+ “Jet plane has a jet engine”
- JetPlane class will have a JetEngine field

public class JetPlane extends Airplane {
private JetEngine[] jets;

Classes LapTop and

Superclass/Subclass Example

Subclass - Laptop
St crte /** Class ma(f;ﬂaresents\(n computer /** Class that represents a lap top computer.
el hor Koffman & Wolfgang * @author Koffman & Wolfgang
public class Computer {
int getRamSize() // Data Fields
int getDisksize) private String manufacturer; public class LapTop
SEoioofoSErninee, private String processor; extends Computer {
Zlk private int ramSize; // Data Fields
rivate int diskSize; . . " "
P private static final String DEFAULT_LT_MAN = "MyBrand";
P —— // Methods private double screenSize;
CTAN /** Initializes a Computer object with all properties specified. private double weight;
@param man The computer manufacturer
Sparan processor The processor type /#* Initializes a LapTop object with all properties specified.
@paran disk The disk size @param man The computer manufacturer
+ @param proc The processor type
public Computer(String man, String processor, int ram, int disk) { @param ram The RAM size
manufacturer = man; @param disk The disk size

@paran screen The screen size
diskSize - disk;

@param wei The weight
*/
public LapTop(String man, String proc, int ram, int disk,
double screen, double wei) {
public String tostring() { super(man, proc, ram, disi);
String result = "Manufacturer: " + manufacturer + screenSize = screen;
U: "+ processor + weight = wei;
\ARAM: " 4 ramSize + " megabytes” +
"\nDisk: " + diskSize + " gigabytes';
return result;
}

// Insert other accessor and modifier methods here.

Inheritance Issues

Use of this.
Initializing data fields in subclass

Use of super()

No-parameter constructor

e protected visibility

Method Overriding

public class TestComputerAndLaptop {

/** Tests classes Computer and LapTop. Creates an object of each and
displays them.
@param args[] No control parameters
@author Koffman & Wolfgang
*/
public static void main(String[] args) {
Computer myComputer = new Computer("Acme", "Intel P4 2.4", 512, 60);
LapTop yourComputer = new LapTop("DellGate", "AMD Athlon 2000", 256, 40,
15.0, 7.5);
System.out.println("My computer is:\n" + myComputer.toString());
System.out.println("\nYour computer is:\n" +
yourComputer.toString());

} My computer is:
Manufacturer: Acne
CPU: Intel P4 2.4
RAM: 512 megabytes
Disk: 60 gigabytes

Your computer is:
Manufacturer: DellGate
CPU: AMD Athlon 2000
RAM: 256 megabytes
Disk: 40 gigabytes

®

Method Overriding

* In the Laptop class:

public String toString() {
String result = super.toString()
+ "\nScreen size: " + screenSize +
+ "\nWeight: " + weight + " pounds";
return result;

inches"

My computer is:
Manufacturer: Acme
CPU: Intel P4 2.4
RAM: 512 megabytes
Disk: 60 gigabytes

Your computer is:
Manufacturer: DellGate
CPU: AMD Athlon 2000
RAM: 256 megabytes
Disk: 40 gigabytes
Screen size: 15.0 inches
Weight: 7.5 pounds 9

Revised UML Diagram
for Computer Class
Hierarchy

Method Overloading

String manufaceurar

String procazsar
ine ranstze
Zisiza
rr—— /** Initializes a LapTop object with all properties specified.
1nt QeeD1 2k 1200 @param man The computer manufacturer
serim toserimO @param proc_The processor type
7 @paran ram The RAM size
@paran disk The disk size
@param screen The screen size
String CERULT LT o @param wei The weight
bte” seraansize v
unla watgh

public LapTop(String man, String proc, int ram, int disk,
strim toserimo double screen, double wei) {
super(man, proc, ram, disk);
screenSize = screen;
weight = wei;

/** Initializes a LapTop object with 5 properties specified. */
public LapTop(String proc, int ram, int disk,
double screen, double wei) {
this(DEFAULT_LT_MAN, proc, ram, disk, screen, wei);

Polymorphism

+ Important feature of OOP languages

+ Object variable may contain reference to the specified
class, or any subclass thereof

+ Enables JVM to determine which (overridden) method to
invoke at runtime based on type of the object reference

Computer comp[] = new Computer[3];

comp[@] = new Computer("Acme", "Intel P4 2.4", 512, 60);

comp[1] = new LapTop("DellGate", "AMD Athlon 2000", 256, 40,
15.0, 7.5);

comp[2] = comp[@];

for (int i = @; i < comp.length; i++)
System.out.println("Computer " + (i+l) + ": \n"
+ comp[i]); 1

Abstract Classes

+ Can declare abstract methods like an
interface, which must be
implemented by subclasses

- Cannot be instantiated

+ Can have field definitions and
method bodies

Summary Table

Comparkcn of Actual Classes, Abstract Classes, and Interfaces

Instances (objects) of this can be created Yes No No
This can define instance variables and methods Yes Yes No
This can define constants Yes Yes Yes
The number of these a class can extend Oorl Oort 0

The number of these a class can implement 0 0 Any number
This can extend another class Yes Yes No
This can declare abstract methods No Yes Yes
Variables of this type can be declared Yes Yes Yes

Multiple Inheritance

* Multiple inheritance: the ability to extend
more than one class

+ Multiple inheritance is a language feature
that is difficult to implement and can lead
to ambiguity

- Therefore, Java does not allow a class to
extend more than one class

Using Multiple Interfaces

« If we define two interfaces, a class can

implement both
Multiple interfaces emulate multiple inheritance

Etends Sudntnd
Enployee

s Herachy it acsStudentIntnd nployeent

el

Implementing Reuse Through
Delegation

+ You can reduce duplication of modifications and
reduce problems associated with version control
through a technique known as delegation

+ In delegation, a method of one class accomplishes
an operation by delegating it to a method of
another class

UL Digamuith
Deegation

Packages

The Java API is organized into packages

The package to which a class belongs is declared
by the first statement in the file in which the
class is defined using the keyword package
followed by the package name

All classes in the same package are stored in the
same directory or folder

All the classes in one folder must declare
themselves to be in the same package

+ Classes that are not part of a package may access

only public members of classes in the package

The No-Package-Declared
Environment and Package Visibility

There exists a default package
- Files that do specify a package are considered part of
the default package
+ If you don't declare packages, all of your
packages belong to the same, default package

+ Package visibility sits between private and
protected
+ Classes, data fields, and methods with package visibility
are accessible to all other methods of the same package
but are not accessible to methods outside of the package
« Classes, data fields, and methods that are declared
protected are visible to all members of the package

Visibility (Access Controls)

Summary of Kinds of Visibility

private Applicable to inner classes. Accessible only o Visible only within this class.
members of the class in which itis declared.
Default or package ~ Visible to classes in this package. Visible to classes in this package.
protected Applicable to inner classes. Visible to classes Visible to classes in this package and to
in this package and to classes outside the classes outside the package that extend
package that extend the class in whichitis — this class.
declared.
public Visible to all classes, Visible to all classes. The class defining

the member must also be public.

