JFLAP Project — Due: Friday, April 8, 2005

Prof. Nadeem Abdul Hamid
CSC 320 Spring 2005

This project involves building finite automata and Turing machines using
a Java-based program, called JFLAP, written by Professor Susan Rodger of
Duke University. You can download the program for free from the following
web page (the download link is near the very bottom of the page):

http://www.cs.duke.edu/ rodger/tools/jflap/
Documentation for the program is available at this web page:
http://www.cs.duke.edu/csed/jflap/new/DOCS/

This software allows you to construct DFAs, NFAs, CFGs, PDAs (non-
deterministic), and Turing machines, among other things. There are a num-
ber of features which we have not covered in our course but you don’t need
to worry about them. Once you have constructed your machine or grammar,
you can simulate it on input in order to test it. Be sure to test your designs
well before submitting them. To submit your work, save each machine or
grammar that you design (using the ”Save” command in the ”File” menu),
put all your files into a ZIP archive and email it to me. For each problem,
save your solution in a file named as follows: ” <your-last-name>-<section-
num>-<part-num>.jff”. For example, my solution to part b of problem 1
below would be saved in a file called "hamid-1-b.jff”.

Note: Instead of the symbol € as we have using in class for the empty
string, JFLAP uses the symbol .

1 Regular Languages

a. Use JFLAP to construct a DFA that accepts all strings that have
exactly one a and two or more b’s.

b. Use JFLAP to construct a six-state DFA which accepts a string if it
has a number of a’s that is a multiple of 2 or a multiple of 3 (or both).

c. Construct a DFA which accepts a string of 0’s and 1’s if, when inter-
preted as a binary number, is a multiple of 5. (This is not easy; think
about it carefully before you start building the DFA.)

d. Construct an NFA that accepts the complement of the language from
part (a). That is, your NFA should reject any strings that have exactly
one a and two or more b’s.

2 Context-Free Languages

Construct pushdown automata (PDAs) for the following languages using
JFLAP:

a. ¥ = {a,b}, L = {a®"b*" | n > 0}. For example, aaabb and aaaaaabbbb
are in L.

b. ¥ ={a,b},L = {w € ¥* | w = w? and w is of odd length }. This is
the language of palindromes of odd length.

c. ¥ ={a,b},L ={w e X*| the number of a’s in w is greater than the
number of b’s }.

Write a CFG (grammar) using JFLAP for each of the following lan-
guages.
a. ¥ ={a,b,c},L ={a"bPc™ | n=p+m,p>0,m >0}

b. ¥ = {(I,b,C},L:{anbpcm |p:n—|—m,n> O,mZO}

3 Turing Machines
Using JFLAP to construct TM’s for the following languages:

a. Powers of two: The input alphabet has one letter, a, and the lan-
guage is the set of all strings w whose length is a power of two. That
is,

Y={a}, L={we¥" | |wf=2"n=>0}

Remember, although the input alphabet only contains the single char-
acter a, you may add as many other characters to the tape alphabet

as you need. Try not to get carried away, though - keep your TM as
simple as possible.

. Adder: Develop a TM to ”perform addition.” In other words, given
a tape containing 111+1111= it should stop with a tape containing
111+1111=1111111. Basically it recognizes the language {x + y = z}
such that z,y, z € 1% and if z = 1%,y = 1° then z = 1912,

. Binary increment: Develop a TM that increments a binary number.
Given a binary number such as 10111 as input, the machine should
stop with a tape containing 11000.

The algorithm for adding one can be described as follows: If the digit
on the tape is a zero, then simply change that digit to a one. If the
digit is a one, change it to a zero, move left, and apply the same
procedure at that position. (This is like ”carrying” a one to the next
column.) Finally, to add one to a blank space, simply change that
blank to a one. (This can occur when a one is carried beyond the
leftmost digit of the number; the blank should be treated just like a
zero.) For example, 110+1=111, 10114+1=1100, and 11+1=100.

