3.1 Basic Definitions and Applications

Undirected Graph

Undirected graph. $G=(V, E)$

- $V=$ nodes.
- $E=$ edges between pairs of nodes
- Captures pairwise relationship between objects
- Graph size parameters: $n=|V|, m=|E|$.

$V=\{1,2,3,4,5,6,7,8\}$
$E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6\}$
$n=8$
$m=11$
(6)

路

Some Graph Applications		
Graph	Nodes	Edges
transportation	street intersections	highways
communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
social	people	relationships
food web	species	predator-prey
software systems	functions	function calls
scheduling	tasks	precedence constraints
circuits	gates	wires

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by- n matrix with $A_{u v}=1$ if (u, v) is an edge

- Two representations of each edge.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time
. Identifying all edges takes $\Theta\left(n^{2}\right)$ time

Paths and Connectivity

Def. A path in an undirected graph $G=(V, E)$ is a sequence P of nodes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}$ with the property that each consecutive pair $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$ is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure

a tree
the same tree, rooted at 1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third

- G is connected.
- G does not contain a cycle
- G has n-1 edges.

3.2 Graph Traversal

Connectivity

$s-t$ connectivity problem. Given two node s and t, is there a path between s and t ?
s-t shortest path problem. Given two node s and t, what is the length of the shortest path between sand t?

Applications.

- Friendster.
- Maze traversal
- Kevin Bacon number.
- Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_{0}=\{s\}$.
- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $L_{i+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.

Theorem. For each i, L_{i} consists of all nodes at distance exactly i
from s. There is a path from s to \dagger iff t appears in some layer.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m+n)$ time if the graph is given by its adjacency representation.

- Easy to prove $O\left(n^{2}\right)$ running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs $\leq n$ times
when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m+n)$ time
- when we consider node u, there are deg(u) incident edges (u, v) - total time processing edges is $\Sigma_{\mathrm{u} \in \mathrm{V}} \operatorname{deg}(\mathrm{u})=2 \mathrm{~m} \quad$.

Breadth First Search

Property. Let T be a BFS tree of $G=(V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1 .

(c)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1=\{1,2,3,4,5,6,7,8\}$.

Flood Fil

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels
- Blob: connected component of lime pixels.

3.4 Testing Bipartiteness

Testing Bipartiteness
Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
- easier if the underlying graph is bipartite (matching)
tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

An Obstruction to Bipartiteness
Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.
Pf. Not possible to 2 -color the odd cycle, let alone G.

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers
produced by BFS starting at nodes. Exactly one of the following holds
(i) No edge of G joins two nodes of the same layer, and G is bipartite
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_{j}.
- Let $z=\operatorname{Ica}(x, y)=$ lowest common ancestor
- Let L_{i} be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $1+(\mathrm{j}-\mathrm{i})+(\mathrm{j}-\mathrm{i})$, which is odd. -

$$
\underbrace{\underbrace{}_{\substack{\text { path from } \\ y \text { to } z}}}_{\substack{(x, y)}} \underbrace{}_{\substack{\text { path from } \\ z \text { to } x}}
$$

3.5 Connectivity in Directed Graphs
Directed Graphs
Directed graph. $G=(\mathrm{V}, \mathrm{E})$

- Edge (u, v) goes from node u to node v.
Ex. Web graph - hyperlink points from one web page to another.
- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web
pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.
Directed s - \dagger shortest path problem. Given two node s and \dagger, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.
Pf. \Leftarrow Path from u to v : concatenate u-s path with s-v path. Path from v to u : concatenate $v-s$ path with s-u path. .

okif paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m+n)$ time. Pf.

- Pick any node s
- Run BFS from s in G.
- Run BFS from sin Grev.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. -

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.
Ex. Precedence constraints: edge $\left(v_{i}, v_{j}\right)$ means v_{i} must precede v_{j}
Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $i<j$.

a DAG

a topological ordering
Precedence Constraints
Precedence constraints. Edge $\left(v_{i}, v_{j}\right)$ means task v_{i} must occur before v_{j}.

Applications.
- Course prerequisite graph: course v_{i} must be taken before v_{j}.
- Compilation: module v_{i} must be compiled before v_{j}. Pipeline of
computing jobs: output of job v_{i} needed to determine input of job v_{j}.

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Pf. (by contradiction)

- Suppose that G has a topological order v_{1}, \ldots, v_{n} and that G also has a directed cycle C. Let's see what happens.
- Let v_{i} be the lowest-indexed node in C, and let v_{j} be the node just before v_{i}; thus $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$ is an edge.
- By our choice of i, we have $i<j$.
- On the other hand, since $\left(v_{j}, v_{i}\right)$ is an edge and v_{1}, \ldots, v_{n} is a
topological order, we must have j < i, a contradiction. -
(1.)
the directed cycle C

the supposed topological order: v_{1}, \ldots, v_{n}

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG
Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Directed Acyclic Graphs

Lemma. If G is a $D A G$, then G has a node with no incoming edges.
Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to $w . C$ is a cycle. -

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m+n)$ time.
Pf.

- Maintain the following information:
- count [w] = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges
- Initialization: $O(m+n)$ via single scan through graph.
- Update: to delete v
- remove v from S
- decrement count [w] for all edges from v to w, and add w to S if c
count [w] hits 0
- this is $O(1)$ per edge -

