
1

Software Development
Fundamentals

CSC490 - Spring 2006

Fundamentals

Management
Technical
Quality-Assurance

Management Fundamentals

Determining size of product (functionality,
complexity, …)

Allocating resources appropriately
Creating a plan for allocating resources
Monitoring & directing resources

Management = Planning

Poor planning -- #1 source of project
problems (Metzger 1981)

Good planning
– Estimation & scheduling
– Determining & organizing project team
– Choosing lifecycle model
– Managing risks
– Strategic decision-making

Estimation & Scheduling

Estimate size of product
Estimate effort needed to build product of

that size
Estimate schedule based on effort estimate

Tracking

Management-level
– Task lists
– Status meetings/reports
– Milestone reviews
– Budget reports
– Walking around

Technical-level
– Technical audits/reviews
– Quality gates to review milestones completed

2

Technical Fundamentals

 “Modern programming practices”
– No high productivity w/out them (Vosburgh ‘84)

Requirements Management
Design
Construction
Software Configuration Management

Requirements Management

Gathering requirements
Recording in document/email/…
Tracking design & code against them
Managing changes over course of project

Too rigid?
– Top 3 reasons for late projects (study of 8000): lack of

user input, incomplete requirements, changing
requirements (Standish Group 1994)

Architecture & Design
– 10x longer to fix errors @ system testing than @ design

stage (Dunn 1984)
Fundamentals

– Major styles: OO, structural, data-structure design
– Foundational concepts: information hiding, modularity,

abstraction, encapsulation, cohesion, coupling,
hierarchy, inheritance, polymorphism, basic alg. + data
structures

– Approaches to challenging aspects: exception handling,
internationalization, portability, I/O, data storage, f.p.
arithmetic, database design, performance, reuse, …

– Application domain considerations: financial, scientific,
embedded, real-time, safety-critical, …

Construction

Most of groundwork for success/failure
already laid
– Requirements & design offer greater leverage

on development schedule than construction
Poor construction practices => introduce

subtle errors take days/weeks to find/fix
– E.g. off-by-one (‘+1’) array declaration error

Construction Fundamentals
 Coding practices (naming, layout, docum.)
 Data-related concepts (scope, persistence)
 Guidelines for data types
 Control-related concepts (conditionals, loops, complexity,

goto/return, recursion)
 Assertions/error-detection
 Rules for packaging code in routines/modules/classes/files
 Unit-testing & debugging
 Integration strategies
 Code-tuning
 Language particularities
 Use of construction tools (IDE, source code control,

libraries, code generators)

Software Configuration
Management
Managing project so it stays consistent over

time
Practices for…

– Evaluating proposed changes
– Tracking changes
– Handling multiple versions
– Keeping copies of project artifacts from various

times

3

Quality Assurance Fundamentals

Key to avoiding/preventing software defects

Error-prone modules
Testing (most common practice)

– Unit tests (by developer)
– System tests (by independent tester)

Technical reviews
– Vary in formality & effectiveness: walkthroughs, code

reading, inspections

Introduction to Requirements

Definition

“A feature of the system or a description of something the system is
capable of doing in order to fulfill the system’s purpose”

Types of Requirements
– Functional
– Non-functional

Strengths
– Must/Shall
– Should
– May

Requirements Engineering

Problem
analysis

Problem
description

Prototyping
and testing

Documentation
and

validation

Have we captured
all the user need?

Are we using
the right

techniques or
views?

Is this function
feasible?

Have we captured
what the user

expects?

REQUIREMENTS ELICITATION
AND ANALYSIS

REQUIREMENTS
DEFINITION

AND SPECIFICATION

Requirements

– Goal
• To understand the problem

– Necessary to Understand Requirements
• Organization
• Existing Systems
• Processes
• Improvements

– Once you have all this information, now what?

Requirements Elicitation

Techniques
– Interview / Meeting
– Survey / Questionnaire
– Observation
– Ethnography / Temporary Assignment
– Business Plans
– Review Internal / External Documents
– Review Software

4

Requirements Analysis

– Goal
• To bridge the gap between the problem domain and

the technical domain

– Tasks
• Problem Recognition
• Evaluation and synthesis
• Modeling
• Specification
• Review

Requirements Analysis Principles

– Information domain of a problem must be
represented and understood

– Models that depict system information,
function, and behavior should be developed

– Models must be partitioned in a manner that
uncovers detail in a layered fashion

– Analysis process should move from essential
information toward implementation detail

Requirements Review?
– Are the requirements complete?
– Are the requirements concise?
– Are the requirements correct?
– Are the requirements consistent?
– Are the requirements modular? Can they accommodate

change?
– Are the requirements realistic?
– Is the requirement needed by the customer?
– Are the requirements traceable?

Class Work

Set up basic project home page
Research software requirements

specification templates on Internet

