Software Development
Fundamentals

CSC490 - Spring 2006

Fundamentals

v Management
v Technical
v Quality-Assurance

Management Fundamentals

v Determining size of product (functionality,
complexity, ...)

v Allocating resources appropriately
v Creating a plan for allocating resources
v Monitoring & directing resources

Management = Planning

v Poor planning -- #1 source of project
problems (Metzger 1981)

v Good planning
— Estimation & scheduling
— Determining & organizing project team
— Choosing lifecycle model
— Managing risks
— Strategic decision-making

Estimation & Scheduling

v Estimate size of product

v Estimate effort needed to build product of
that size

v Estimate schedule based on effort estimate

Tracking

v Management-level
— Task lists
— Status meetings/reports
— Milestone reviews
— Budget reports
— Walking around

v Technical-level

— Technical audits/reviews
— Quality gates to review milestones completed

Technical Fundamentals

v “Modern programming practices”
— No high productivity w/out them (Vosburgh ‘84)

v Requirements Management

v Design

v Construction

v Software Configuration Management

Requirements Management

v Gathering requirements

v Recording in document/email/...

v Tracking design & code against them

v Managing changes over course of project

v Too rigid?
— Top 3 reasons for late projects (study of 8000): lack of
user input, incomplete requirements, changing
requirements (Standish Group 1994)

Architecture & Design

— 10x longer to fix errors @ system testing than @ design

stage (Dunn 1984)
v Fundamentals

— Major styles: OO, structural, data-structure design

— Foundational concepts: information hiding, modularity,
abstraction, encapsulation, cohesion, coupling,
hierarchy, inheritance, polymorphism, basic alg. + data
structures

— Approaches to challenging aspects: exception handling,
internationalization, portability, I/O, data storage, f.p.
arithmetic, database design, performance, reuse, ...

— Application domain considerations: financial, scientific,
embedded, real-time, safety-critical, ...

Construction

v Most of groundwork for success/failure
already laid

— Requirements & design offer greater leverage
on development schedule than construction

v Poor construction practices => introduce
subtle errors take days/weeks to find/fix
— E.g. off-by-one (‘+1°) array declaration error

Construction Fundamentals

v Coding practices (naming, layout, docum.)
v Data-related concepts (scope, persistence)
v Guidelines for data types

v Control-related concepts (conditionals, loops, complexity,
goto/return, recursion)

v Assertions/error-detection

v Rules for packaging code in routines/modules/classes/files
v Unit-testing & debugging

v Integration strategies

v Code-tuning

v Language particularities

v Use of construction tools (IDE, source code control,
libraries, code generators)

Software Configuration
Management

v Managing project so it stays consistent over
time
v Practices for...
— Evaluating proposed changes
— Tracking changes
— Handling multiple versions

— Keeping copies of project artifacts from various
times

Quality Assurance Fundamentals
v Key to avoiding/preventing software defects

v Error-prone modules
v Testing (most common practice)
— Unit tests (by developer)
— System tests (by independent tester)
v Technical reviews

— Vary in formality & effectiveness: walkthroughs, code
reading, inspections

Introduction to Requirements

v Definition

“A feature of the system or a description of something the system is
capable of doing in order to fulfill the system’s purpose”

v Types of Requirements ¢ Strengths

Requirements Engineering

REQUIREMENTS
REQUIREMENTS ELICITATION DEFINITION
AND ANALYSIS AND SPECIFICATION
Problem Problem Pr i
analysis 4 description | | andtesting ||| | and
validation
Have we captured Are we using Is this function Have we captured
alltheuserneed? theright feasible? whatthe user
techniques or expects?
views?

— Functional — Must/Shall
— Non-functional — Should
— May
Requirements
— Goal

* To understand the problem
— Necessary to Understand Requirements
* Organization
* Existing Systems
* Processes
» Improvements

— Once you have all this information, now what?

Requirements Elicitation

v Techniques
— Interview / Meeting
— Survey / Questionnaire
— Observation
— Ethnography / Temporary Assignment
— Business Plans
— Review Internal / External Documents

— Review Software

Requirements Analysis

— Goal

* To bridge the gap between the problem domain and
the technical domain

— Tasks
* Problem Recognition
* Evaluation and synthesis
* Modeling
* Specification

* Review

Requirements Analysis Principles

— Information domain of a problem must be
represented and understood

— Models that depict system information,
function, and behavior should be developed

— Models must be partitioned in a manner that
uncovers detail in a layered fashion

— Analysis process should move from essential
information toward implementation detail

Requirements Review?

— Are the requirements complete?

— Are the requirements concise?

— Are the requirements correct?

— Are the requirements consistent?

— Are the requirements modular? Can they accommodate
change?

— Are the requirements realistic?

— Is the requirement needed by the customer?

— Are the requirements traceable?

Class Work

v Set up basic project home page

v Research software requirements
specification templates on Internet

