
Yale University

Department of Computer Science

Building Certified Libraries for PCC:
Dynamic Storage Allocation

Dachuan Yu Nadeem A. Hamid Zhong Shao
Yale University

YALEU/DCS/TR-1247
May 6, 2003

This research is based on work supported in part by DARPA OASIS grant F30602-99-1-0519, NSF
grant CCR-9901011, NSF ITR grant CCR-0081590, and NSF grant CCR-0208618. Any opinions,
findings, and conclusions contained in this document are those of the authors and do not reflect
the views of these agencies.

Abstract

Proof-Carrying Code (PCC) allows a code producer to provide to a host a
program along with its formal safety proof. The proof attests a certain safety
policy enforced by the code, and can be mechanically checked by the host. While
this language-based approach to code certification is very general in principle,
existing PCC systems have only focused on programs whose safety proofs can
be automatically generated. As a result, many low-level system libraries (e.g.,
memory management) have not yet been handled. In this paper, we explore a
complementary approach in which general properties and program correctness
are semi-automatically certified. In particular, we introduce a low-level language
CAP for building certified programs and present a certified library for dynamic
storage allocation.

Building Certified Libraries for PCC:
Dynamic Storage Allocation

Dachuan Yu Nadeem A. Hamid Zhong Shao

Department of Computer Science, Yale University
New Haven, CT 06520-8285, U.S.A.
{yu,hamid-nadeem,shao}@cs.yale.edu

Technical Report YALEU/DCS/TR-1247
May 6, 2003

Abstract. Proof-Carrying Code (PCC) allows a code producer to pro-
vide to a host a program along with its formal safety proof. The proof
attests a certain safety policy enforced by the code, and can be mechan-
ically checked by the host. While this language-based approach to code
certification is very general in principle, existing PCC systems have only
focused on programs whose safety proofs can be automatically generated.
As a result, many low-level system libraries (e.g., memory management)
have not yet been handled. In this paper, we explore a complementary
approach in which general properties and program correctness are semi-
automatically certified. In particular, we introduce a low-level language
CAP for building certified programs and present a certified library for
dynamic storage allocation.

1 Introduction

Proof-Carrying Code (PCC) is a general framework pioneered by Necula and
Lee [15, 13]. It allows a code producer to provide a program to a host along with
a formal safety proof. The proof is incontrovertible evidence of safety which
can be mechanically checked by the host; thus the host can safely execute the
program even though the producer may not be trusted.

Although the PCC framework is general and potentially applicable to certi-
fying arbitrary data objects with complex specifications [14, 2], generating proofs
remains difficult. Existing PCC systems [16, 12, 3, 1] have only focused on pro-
grams whose safety proofs can be automatically generated. As a result, many
low-level system libraries, such as dynamic storage allocation, have not been
certified. Nonetheless, building certified libraries, especially low-level system li-
braries, is an important task in certifying compilation. It not only helps increase

This research is based on work supported in part by DARPA OASIS grant F30602-
99-1-0519, NSF grant CCR-9901011, NSF ITR grant CCR-0081590, and NSF grant
CCR-0208618. Any opinions, findings, and conclusions contained in this document
are those of the authors and do not reflect the views of these agencies.

the reliability of “infrastructure” software by reusing provably correct program
routines, but also is crucial in making PCC scale for production.

On the other hand, Hoare logic [7, 8], as a widely applied approach in program
verification, allows programmers to express their reasonings with assertions and
the application of inference rules, and can be used to prove general program cor-
rectness. In this paper, we introduce a conceptually simple low-level language for
certified assembly programming (CAP) that supports Hoare-logic style reason-
ing. We use CAP to build a certified library for dynamic storage allocation, and
further use this library to build a certified program whose correctness proof can
be mechanically checked. Applying Hoare-logic reasonings at an assembly-level,
our paper makes the following contributions:

– CAP is based on a common instruction set so that programs can be executed
on real machines with little effort. The expected behavior of a program is
explicitly written as a specification using higher-order logic. The programmer
proves the well-formedness of a program with respect to its specification
using logic reasoning, and the result can be checked mechanically by a proof-
checker. The soundness of the language guarantees that if a program passes
the static proof-checking, its run-time behavior will satisfy the specification.

– Using CAP, we demonstrate how to build certified libraries and programs.
The specifications of library routines are precise yet general enough to be
imported in various user programs. Proving the correctness of a user program
involves linking with the library proofs.

– We implemented CAP and the dynamic storage allocation routines using the
Coq proof assistant [20], showing that this library is indeed certified. The
example program is also implemented. All the Coq code is available [21].

– Lastly, memory management is an important and error-prone part of most
non-trivial programs. It is also considered to be hard to certify by previous
researches. We present a provably correct implementation of a typical dy-
namic storage allocation algorithm. To the authors’ knowledge, it is so far
the only certified library for memory management.

2 Dynamic Storage Allocation

In the remainder of this paper, we focus on the certification and use of a library
module for dynamic storage allocation. In particular, we implement a storage
allocator similar to that described in [10, 11]. The interface to our allocator
consists of the standard malloc and free functions. The implementation keeps
track of a free list of blocks which are available to satisfy memory allocation
requests. As shown in Figure 1, the free list is a null-terminated list of (non-
contiguous) memory blocks. Each block in the list contains a header of two
words: the first stores a pointer to the next block in the list, and the second
stores the size of the block. The allocated block pointer that is returned to a
user program points to the useable space in the block, not to the header.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

free list

free space owned by malloc

non−free space owned by malloc
or not owned by malloc

zooming into a free space:

points to next free block

address to return to user

size

Fig. 1. Free list and free blocks.

The blocks in the list are sorted in order of increasing address and requests
for allocation are served based on a first-fit policy; hence, we implement an
address-ordered first-fit allocation mechanism. If no block in the free list is big
enough, or if the free list is empty, then malloc requests more memory from the
operating system as needed. When a user program is done with a memory block,
it is returned to the free list by calling free, which puts the memory block into
the free list at the appropriate position.

Our implementation in this paper is simple enough to understand, yet faith-
fully represents mechanisms used in traditional implementations of memory al-
locators [22, 10, 11]. For ease of presentation, we assume our machine never runs
out of memory so malloc will never fail, but otherwise many common low-level
mechanisms and techniques used in practice are captured in this example, such
as use of a free list, in-place header fields, searching and sorting, and splitting
and coalescing (described below). We thus believe our techniques can be as easily
applied to a variety of other allocator implementations than described here.

In the remainder of this section, we describe in detail the functionality of the
malloc and free library routines (Figure 2), and give some “pseudo-code” for
them. We do not show the calloc (allocate and initialize) and realloc (resize
allocated block) routines because they essentially delegate their tasks to the two
main functions described below.

free This routine puts a memory block into the free list. It takes a pointer
(ptr) to the useable portion of a memory block (preceded by a valid header)
and does not return anything. It relies on the preconditions that ptr points to
a valid “memory block” and that the free list is currently in a good state (i.e.,
properly sorted). As shown in Figure 2, free works by walking down the free
list to find the appropriate (address-ordered) position for the block. If the block
being freed is directly adjacent with either neighbor in the free list, the two are
coalesced to form a bigger block.

malloc This routine is the actual storage allocator. It takes the size of the
new memory block expected by the user program, and returns a pointer to an
available block of memory of that size. As shown in Figure 2, malloc calculates

void free (void* ptr) {

hp = ptr - header_size; // move to header

for (prev = nil, p = flist; p <> nil; prev = p, p = p->next)

if (hp < p) { // found place

if (hp + hp->size == p) // join or link with upper neighbor

hp->size += p->size, hp->next = p->next;

else hp->next = p;

if (prev <> nil) // join or link with lower neighbor

if (prev + prev->size == hp)

prev->size += hp->size, prev->next = hp->next;

else prev->next = hp;

else flist = hp;

return;

}

hp->next = nil; // block’s place is at end of the list

if (prev <> nil) // join or link with lower neighbor

if (prev + prev->size == hp)

prev->size += hp->size, prev->next = hp->next;

else prev->next = hp;

else flist = hp;

}

void* malloc (int reqsize) {

actual_size = reqsize + header_size;

for(prev = nil, p = flist; ; prev = p, p = p->next)

if (p==nil) { // end of free list, request more memory

more_mem(actual_size);

prev = nil, p = flist; // restart the search loop

} else if (p->size > actual_size + header_size) {

p->size -= actual_size; // found block bigger than needed

p += p->size; // by more than a header size,

p->size = actual_size; // so split into two

return (p + header_size);

} else if (p->size >= actual_size) { // found good enough block

if (prev==nil) flist = p->next; else prev->next = p->next;

return (p + header_size);

}

}

void more_mem(int req_size) {

if (req_size < NALLOC) req_size = NALLOC; // request not too small

q = alloc(req_size); // call system allocator

q->size = req_size;

free(q + header_size); // put new block on free list

}

Fig. 2. Pseudo code of allocation routines.

the actual size of the block needed including the header and then searches the
free list for the first available block with size greater than or equal to what is

required. If the size of the block found is large enough, it is split into two and a
pointer to the tail end is returned to the user.

If no block in the free list is large enough to fulfill the request, more memory is
requested from the system by calling more mem. Because this is a comparatively
expensive operation, more mem requests a minimum amount of memory each time
to reduce the frequency of these requests. After getting a new chunk of memory
from the system, it is appended onto the free list by calling free.

These dynamic storage allocation algorithms often temporarily break certain
invariants, which makes it hard to automatically prove their correctness. During
intermediate steps of splitting, coalescing, or inserting memory blocks into the
free list, the state of the free list or the memory block is not valid for one or
two instructions. Thus, a traditional type system would need to be extremely
specialized to be able to handle such code.

3 A Language for Certified Assembly Programming (CAP)

To write our certified libraries, we use a low-level assembly language CAP fitted
with specifications reminiscent of Hoare-logic. The assertions that we use for
verifying the particular dynamic allocation library described in this paper are
inspired by Reynolds’ “separation logic” [19, 18].

The syntax of CAP is given in Figure 3. A complete program (or, more
accurately, machine state) consists of a code heap, a dynamic state component
made up of the register file and data heap, and an instruction sequence. The
instruction set captures the most basic and common instructions of an assembly
language, and includes primitive alloc and free commands which are to be viewed
as system calls. The register file is made up of 32 registers and we assume an
unbounded heap with integer words of unlimited size for ease of presentation.

Our type system, as it were, is a very general layer of specifications such
that assertions can be associated with programs and instruction sequences. Our
assertion language (Assert) is the calculus of inductive constructions (CiC) [20,
17], an extension of the calculus of constructions [4] which is a higher-order typed
lambda calculus that corresponds to higher-order predicate logic via the Curry-
Howard isomorphism [9]. In particular, we implement the system described in
this paper using the Coq proof assistant [20]. Assertions are thus defined as Coq
terms of type State→Prop, where the various syntactic categories of the assembly
language (such as State) have been encoded using inductive definitions. We give
examples of inductively defined assertions used for reasoning about memory in
later sections.

3.1 Operational Semantics

The operational semantics of the assembly language is fairly straightforward and
is defined in Figures 4 and 5. The former figure defines a “macro” relation de-
tailing the effect of simple instructions on the dynamic state of the machine.

(Program) P ::= (C, S, I)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗

(Register) r ::= {rk}k∈{0...31}

(Labels) f, l ::= i (nat nums)
(WordVal) w ::= i (nat nums)
(InstrSeq) I ::= c; I | jd f | jmp r

(Command) c ::= add rd, rs, rt | addi rd, rs, i
| sub rd, rs, rt | subi rd, rs, i
| mov rd, rs | movi rd, i
| bgt rs, rt, f | bgti rs, i , f
| alloc rd[rs] | ld rd, rs(i)
| st rd(i), rs | free rs

(CdHpSpec) Ψ ::= {f ; a}∗
(Assert) a ::= . . .

Fig. 3. Syntax of CAP.

Control-flow instructions, such as jd or bgt, do not affect the data heap or reg-
ister file. The domain of the heap is altered by either an alloc command, which
increases the domain with a specified number of labels mapped to undefined
data, or by free, which removes a label from the domain of the heap. The ld and
st commands are used to access or update the value stored at a given label.

Since we intend to model realistic low-level assembly code, we do not have a
“halt” instruction. In fact, termination is undesirable since it means the machine
has reached a “stuck” state where, for example, a program is trying to branch to
a non-existent code label, or access an invalid data label. We present in the next
section a system of inference rules for specifications which allow one to statically
prove that a program will never reach such a bad state.

3.2 Inference Rules

We define a set of inference rules allowing us to prove specification judgments
of the following forms:

Ψ ` {a}P (well-formed program)
Ψ ` C (well-formed code heap)
Ψ ` {a} I (well-formed instruction sequence)

Programs in our assembly language are written in continuation-passing style
because there are no call/return instructions. Hence, we only specify precondi-
tions for instruction sequences (preconditions of the continuations actually serve
as the postconditions). If a given state satisfies the precondition, the sequence
of instructions will run without reaching a bad state. Furthermore, in order to
check code blocks, which are potentially mutually recursive, we require that all
labels in the code heap be associated with a precondition– this mapping is our
code heap specification, Ψ .

Well-formed code heap and programs A code heap is well-formed if the code block
associated with every label in the heap is well-formed under the corresponding
precondition. Then, a complete program is well-formed if the code heap is well-
formed, the current instruction sequence is well-formed under the precondition,

if c = then AuxStep(c, (H,R)) =

add rd, rs, rt (H,R{rd ; R(rs) + R(rt)})
addi rd, rs, i (H,R{rd ; R(rs) + i})
sub rd, rs, rt (H,R{rd ; R(rs)− R(rt)})
subi rd, rs, i (H,R{rd ; R(rs)− i})
mov rd, rs (H,R{rd ; R(rs)})
movi rd, w (H,R{rd ; w})

Fig. 4. Auxiliary state update macro.

and the precondition also holds for the dynamic state.

Ψ = {f1 ; a1 . . . fn ; an} Ψ ` {ai} Ii ∀i ∈ {1 . . . n}
Ψ ` {f1 ; I1 . . . fn ; In}

(1)

Ψ ` C Ψ ` {a} I (a S)

Ψ ` {a} (C, S, I)
(2)

Well-formed instructions: Pure rules The inference rules for instruction se-
quences can be divided into two categories: pure rules, which do not interact
with the data heap, and impure rules, which deal with access and modification
of the data heap.

The structure of many of the pure rules is very similar. They involve showing
that for all states, if an assertion a holds, then there exists an assertion a′

which holds on the state resulting from executing the current command and,
additionally, the remainder of the instruction sequence is well-formed under a′.
We use the auxiliary state update macro defined in Figure 4 to collapse the rules
for arithmetic instructions into a single schema. For control flow instructions,
we instead require that if the current assertion a holds, then the precondition of
the label that is being jumped to must also be satisfied.

c ∈ {add, addi, sub, subi,mov,movi}
∀H.∀R. a (H,R)⊃a′ (AuxStep(c, (H,R))) Ψ ` {a′} I

Ψ ` {a} c; I
(3)

∀H.∀R. (R(rs) ≤ R(rt))⊃a (H,R)⊃a′ (H,R)
∀H.∀R. (R(rs) > R(rt))⊃a (H,R)⊃a1 (H,R)
Ψ ` {a′} I Ψ(f) = a1

Ψ ` {a} bgt rs, rt, f; I
(4)

∀H.∀R. (R(rs) ≤ i)⊃a (H,R)⊃a′ (H,R)
∀H.∀R. (R(rs) > i)⊃a (H,R)⊃a1 (H,R)
Ψ ` {a′} I Ψ(f) = a1

Ψ ` {a} bgti rs, i , f; I
(5)

∀S. a S⊃a1 S where Ψ(f) = a1

Ψ ` {a} jd f
(6)

(C, (H,R), I) 7−→ P where

if I = then P =

jd f (C, (H,R), I′) where C(f) = I
′

jmp r (C, (H,R), I′) where C(R(r)) = I
′

bgt rs, rt, f; I′ (C, (H,R), I′) when R(rs) ≤ R(rt); and
(C, (H,R), I′′) when R(rs) > R(rt) where C(f) = I

′′

bgti rs, i , f; I′ (C, (H,R), I′) when R(rs) ≤ i ; and
(C, (H,R), I′′) when R(rs) > i where C(f) = I

′′

alloc rd[rs]; I
′ (C, (H′,R{rd ; l}), I′)

where R(rs) = i , H′ = H{l ; , . . . , l + i − 1 ; }
and {l, . . . , l + i − 1} ∩ dom(H) = ∅

free rs; I
′ (C, (H′,R), I′) where ∀l ∈ dom(H′).H′(l) = H(l),

R(rs) ∈ dom(H), and dom(H′) = dom(H)− R(rs)

ld rd, rs(i); I′ (C, (H,R{rd ; H(R(rs) + i)}), I′)
where (R(rs) + i) ∈ dom(H)

st rd(i), rs; I
′ (C, (H{R(rd) + i ; R(rs)},R), I′)

where (R(rd) + i) ∈ dom(H)

c; I′ for remaining cases of c (C, AuxStep(c, (H,R)), I′)

Fig. 5. Operational semantics.

∀H.∀R. a (H,R)⊃a1 (H,R) where Ψ(R(r)) = a1

Ψ ` {a} jmp r
(7)

Well-formed instructions: Impure rules As mentioned previously, these rules
involve accessing or modifying the data heap.

∀H.∀R. a (H,R)⊃a′ (H{l ; , . . . , l + i − 1 ; },R{rd ; l})
where R(rs) = i and {l, . . . , l + i − 1} ∩ dom(H) = ∅
Ψ ` {a′} I

Ψ ` {a} alloc rd[rs]; I
(8)

∀H.∀R. a (H,R)⊃((R(rs) + i) ∈ dom(H)) ∧ (a′ (H,R{rd ; H(R(rs) + i)}))
Ψ ` {a′} I

Ψ ` {a} ld rd, rs(i); I
(9)

∀H.∀R. a (H,R)⊃((R(rd) + i) ∈ dom(H)) ∧ (a′ (H{R(rd) + i ; R(rs)},R))
Ψ ` {a′} I

Ψ ` {a} st rd(i), rs; I
(10)

∀H.∀R. a (H,R)⊃(R(rs) ∈ dom(H)) ∧ (a′ (H′,R))
where dom(H′) = dom(H)− R(rs) and ∀l ∈ dom(H′).H′(l) = H(l)
Ψ ` {a′} I

Ψ ` {a} free rs; I
(11)

3.3 Soundness

We establish the soundness of these inference rules with respect to the opera-
tional semantics of the machine following the syntactic approach of proving type

soundness [23]. From “Type Preservation” and “Progress” lemmas (proved by
induction on I), we can guarantee that given a well-formed program, the current
instruction sequence will be able to execute without getting “stuck.” Further-
more, at the point when the current instruction sequence branches to another
code block, the machine state will always satisfy the precondition of that block.

Lemma 1 (Type Preservation). If Ψ ` {a} (C,S, I) and (C,S, I) 7−→ P, then
there exists an assertion a′ such that Ψ ` {a′}P.

Lemma 2 (Progress). If Ψ ` {a} (C,S, I), then there exists a program P such
that (C,S, I) 7−→ P.

Theorem 1 (Soundness). If Ψ ` {a} (C,S, I), then for all natural number n,
there exists a program P such that (C,S, I) 7−→n

P, and
– if (C,S, I)7−→∗(C,S′, jd f), then Ψ(f) S′;
– if (C,S, I)7−→∗(C, (H,R), jmp rd), then Ψ(R(rd)) (H,R);
– if (C,S, I)7−→∗(C, (H,R), (bgt rs, rt, f)) and R(rs) > R(rt), then Ψ(f) (H,R);
– if (C,S, I)7−→∗(C, (H,R), (bgti rs, i , f)) and R(rs) > i , then Ψ(f) (H,R).

It should be noted here that this soundness theorem establishes more than
simple type safety. In addition to that, it states that whenever we jump to a
block of code in the heap, the specified precondition of that code (which is an
arbitrary assertion) will hold.

4 Certified Dynamic Storage Allocation

Equipped with CAP, we are ready to build the certified library. In particular,
we provide provably correct implementation for the library routines free and
malloc. The main difficulties involved in this task are: (1) to give precise yet
general specifications to the routines; (2) to prove as theorems the correctness of
the routines with respect to their specifications; (3) the specifications and theo-
rems have to be modular so that they can interface with user programs. In this
section, we discuss these problems for free and malloc respectively. From now
on, we use the word “specification” in the wider sense, meaning anything that
describes the behavior of a program. To avoid confusion, we call the language
construct Ψ a code heap spec, or simply spec.

Before diving into certifying the library, we define some assertions related to
memory blocks and the free list as shown in Figure 6. These definitions make
use of some basic operators (which we implement as shorthands using primitive
constructs) commonly seen in separation logic [19, 18]. In particular, emp asserts
that the heap is empty; e 7→e′ asserts that the heap contains one cell at address
e which contains e′; and separating conjunction p*q asserts that the heap can
be split into two disjoint parts in which p and q hold respectively.

Memory block (MBlk p q s) asserts that the memory at address p is preceded
by a pair of words: the first word contains q, a (possibly null) pointer to another

MBlk p q s
≡ (p > 2) ∧ (s > 2) ∧

(p− 2 7→q)*(p− 1 7→s)
*(p, . . . , p+ s− 3 7→ , . . . ,)

MBlkLst 0 p q
≡ emp∧(p = q)

MBlkLst (n+ 1) p q
≡ ∃p′.(MBlk (p+ 2) p′)

*(MBlkLst n p′ q)
∧(p < p′ ∨ p′ = nil)

EndL flist p q
≡ ((p = nil)⊃(MBlkLst 0 flist q))
∧(p 6= nil

⊃∃n. ((MBlkLst n flist p)
∗(MBlk (p+ 2) q)
∧(p < q ∨ q = nil)))

MidL flist p q
≡ ∃n.(EndL flist p q)

*(MBlkLst n q nil)

Good flist
≡ ∃n.(MBlkLst n flist nil)

∀p.∀q. (MidL flist p q)⊃(Good flist)

p’

...

q

nil

q s

p−1 p p+s−3p−2

...

flist

p

...

p

q

...

q

flist

p

MBlkLst n+1 p q

MBlk p q s

MidL flist p q

EndL flist p q

Fig. 6. Assertions on free list.

memory block, and the second word contains the size of the memory block itself
(including the two-word header preceding p).

Memory block list (MBlkLst n p q) models an address-ordered list of blocks.
n is the number of blocks in the list, p is the starting pointer and q is the
ending pointer. This assertion is defined inductively and is a specialized version
of the singly-linked list introduced by Reynolds [19, 18]. However, unlike the
somewhat informal definition of singly-linked list, MBlkLst has to be defined
formally for mechanical proof-checking. Thus we use a Coq inductive definition
for this purpose. In contrast, if the assertion language is defined syntactically,
inductive definitions have to be defined in the assertion language, which is not
shown in previous work.

A list with ending block (EndL flist p q) is defined as a list flist of memory
blocks with p pointing at the last block whose forward pointer is q. In the special
case that flist is an empty list, p is nil. (MidL flist p q) models a list with a
block B in the middle, where the list starts from flist, and the block B is
specified by the position p and the forward pointer q. This assertion is defined as

the separating conjunction of a list with ending block B and a null-terminated
list starting from the forward pointer of B.

Finally we define a good free list (Good) as a null-terminated memory block
list. It is easy to show the relation between MidL and Good as described.

free Putting aside the syntax for the moment, a specification which models the
expected behavior of free can be written as the following Hoare triple:

{PRE} free(fptr) {POST};
where PRE ≡ Pred ∗ (MBlk fptr) ∗ (Good flist)

POST ≡ Pred ∗ (Good flist)

Assertion PRE states the precondition. It requires that the heap can be sep-
arated into three disjoint parts, where fptr points to a memory block to be
freed; flist points to a good free list; and the remaining part satisfies the user
specified assertion Pred. Assertion POST states the postcondition. Since the
memory block is placed into the free list, the heap now can be separated into
two disjoint parts: flist still points to a good free list, and the remaining part
of the heap still satisfies Pred because it is untouched.

Note that this does not totally specify all the behaviors of free. For example,
it is possible to add in the postcondition that the memory block that fptr pointed
to is now in the free list. However, this is irrelevant from a library user’s point
of view. Thus we favor the above specification, which guarantees that free does
not affect the remaining part of the heap.

Now we write this specification in CAP, where programs are written in
continuation-passing style. Before free completes its job and jumps to the return
pointer, the postcondition should be established. Thus the postcondition can be
interpreted as the precondition of the code referred to by the return pointer.
Suppose r0 is the return pointer, a valid library call to free should require that
POST implies Ψ(R(r0)) for all states (which we write as POST =⇒Ψ(R(r0))).
In fact, this condition is required for type-checking the returning code of free
(i.e., jmp r0). As a library routine, free is expected to be used in various pro-
grams with different code heap specs (Ψ). So the above condition has to be
established by the user with the actually knowledge of Ψ . When proving the
well-formedness of free, this condition is taken as a premise.

At an assembly-level, most non-trivial programs are expressed as multiple
code blocks connected together with control flow instructions (jd, jmp and bgt).
Type-checking these control flow instructions requires similar knowledge about
the code heap spec Ψ . For instance, at the end of the code block free, an asser-
tion Aiter is established about the current state, and the control is transferred
to the code block iter with a direct jump. When type-checking this direct jump
(i.e., jd iter) against the assertion Aiter, the inference rule 6 requires that Aiter
implies Ψ(iter) for all states. These requirements are also taken as premises in
the well-formedness theorem of free. Thus the specification of free is actually
as follows:

∀Pred.∀Ψ.∀f. (POST =⇒Ψ(f)) ∧ (Aiter=⇒Ψ(iter))
⊃Ψ ` {PRE ∧ R(r0) = f}C(free)

where C(free) is the code block labeled free, r0 holds the return location,
and universally quantified Pred occurs inside the macros PRE and POST as
defined before. This is defined as a theorem and formally proved in Coq.

Following similar ideas, the well-formedness of all the other code blocks im-
plementing the library routine free are also modeled and proved as theorems,
with the premises changed appropriately according to which labels they refer to.

Using the Coq proof-assistant, proving these theorems is not difficult. Pure
instructions only affect the register file; they are relatively easy to handle. Impure
instructions affect the heap. Nonetheless, commonalities on similar operations
can be factored out as lemmas. For instance, writing into the “link” field of a
memory block header occurs in various places. By factoring out this behavior as
a lemma and applying it, the proof construction becomes simple routine work.
The only tricky part lies in proving the code which performs coalescing of free
blocks. This operation essentially consists of two steps: one to modify the size
field; the other to combine the blocks. No matter which one is performed first,
one of the blocks has to be “broken” from being a valid memory block as required
by MBlk. This behavior is hard to handle in conventional type systems, because
it tends to break certain invariants captured by the type system.

In Figure 9 of Appendix A, we give the routine free written in CAP. This
program is annotated with assertions at various program points. It contains the
spec templates (the assertions at the beginning of every code block), and can
be viewed as an outline of the proof. In this program, variables are used instead
of register names for ease of understanding. We also assume all registers to be
caller-saved, so that updating the register file does not affect the user customized
assertion Pred. Typically relevant states are saved in activation records in a stack
when making function calls, and Pred would be dependent only on the stack.
In the current implementation, we have not yet provided certified activation
records; instead, we simply use different registers for different programs.

A certified library routine consists of both the code and the proof. Accord-
ingly, the interface of such a routine consists of both the signature (parameters)
and the spec templates (e.g., PRE,POST). When the routine is used by a user
program, both the parameters and the spec templates should be instantiated
properly. The well-formedness of free is also a template which can be applied
to various assertion Pred, code heap spec Ψ and returning label f . If a user pro-
gram contains only one call-site to free, the corresponding assertion for free
should be used in Ψ . However, if a user program contains multiple call-sites to
free, a “sufficiently weak” assertion for free must be constructed by building a
disjunction of all the individually instantiated assertions. The following derived
Rule 12 (which is proved by induction on I), together with the theorem for the
well-formedness of free, guarantees that the program type-checks.

Ψ ` {a1} I Ψ ` {a2} I
Ψ ` {a1 ∨ a2} I

(12)

malloc Similarly as for free, an informal specification of malloc can be de-
scribed as follows:

{PRE} malloc(nsize,mptr) {POST};
where PRE ≡ Pred ∗ (Good flist) ∧ (nsize = s0 > 0)

POST ≡ Pred′ ∗ (Good flist) ∗ (MBlk mptr s) ∧ (s0 + 2 ≤ s)

The precondition PRE states that flist points to a good free list, user cus-
tomized assertion Pred holds for the remaining part of the heap, and the re-
quested size nsize is larger than 0. The postcondition POST states that part
of the heap is the newly allocated memory block pointed to by mptr whose size
is at least the requested one, flist still points to a good free list, and another
assertion Pred′ holds for the remaining part of the heap. Pred′ may be different
from Pred because malloc modifies register mptr. The relation between these
two assertions is described by SIDE as follows:

SIDE ≡ ∀(H,R). P red (H,R)⊃Pred′ (H,R{mptr ; })

Typically, Pred does not depend on mptr. So Pred′ is the same as Pred and
the above condition is trivially established.

To type-check the control-flow instructions of routine malloc without know-
ing the actual code heap spec Ψ , we add premises to the well-formedness theorem
of malloc similarly as we did for free. The specification in CAP is as follows:

∀Pred.∀Pred′.∀s0.∀Ψ.∀f. SIDE ∧ (POST =⇒Ψ(f)) ∧ (Ainit=⇒Ψ(init))
⊃Ψ ` {PRE ∧ R(r1) = f}C(malloc)

where C(malloc) is the code block labeled malloc, universally quantified Pred,
Pred′ and s0 occur inside the macros PRE, POST and SIDE, init is the label
of a code block that malloc refers to, and Ainit is the assertion established when
malloc jumps to init. Because malloc calls free during its execution, we use
a different register r1 to hold the return location for routine malloc, due to the
lack of certified activation records. The well-formedness of all the other code
blocks implementing routine malloc are modeled similarly.

Proving these theorems is not much different than proving those of free. A
tricky part is on the splitting of memory blocks. Similar to coalescing, splitting
temporarily breaks certain invariants; thus it is hard to handle in conventional
type systems. The annotated malloc routine in CAP is shown in Figure 10 of
Appendix A as an outline of the proof.

5 Example: copy program

With the certified implementation (i.e., code and proof) of free and malloc,
we now implement a certified program copy. As shown in Figure 7, this copy
program takes a pointer to a list as the argument, makes a copy of the list, and
disposes the original one.

To make use of the certified routines free and malloc, we define assertions
for the list data structure in Figure 8. (Pair p x q) defines a pair at location p

list* copy (list* src) {

target = prev = nil;

while (src<>nil) {

p = malloc(2); \\ allocate for a new element

p->data = src->data, p->link = src->link; \\ copy an element

old = src, src = src->link, free(old); \\ dispose old one

if (prev == nil) {target = p, prev = p}

else {prev->link = p, prev=p} \\ link in new element

}

return target;

}

Fig. 7. Pseudo code of copy

which stores values x and q; it carries the fact that it resides inside a “malloced”
memory block. (Slist α p q) defines a list with the help of Pair; it represents a
list segment from p to q representing the sequence α. The structure of the Slist
definition is close to that of MBlkLst and Reynolds’ singly-linked list [19, 18].

The MBlk assertion carried inside Pair is crucial for the memory block to be
“freed” when required. It has to be preserved throughout the copy program.
Typically when operating on a pair at location p, only locations p and p + 1
are referred to. Thus as long as the header of the memory block is untouched,
preserving MBlk is straightforward.

Certifying the copy program involves the following steps: (1) write the plain
code; (2) write the code heap spec; (3) prove the well-formedness of the code with
respect to the spec, with the help of the library proofs. Figure 11 of Appendix A
shows the copy program with annotations at various program points.

The spec for the code blocks that implement the copy program depends
on what property one wants to achieve. In our example, we specify the partial
correctness that if copy ever completes its task (by jumping to halt), the result
list contains the same sequence as the original one.

We get the specs of the library blocks by instantiating the spec templates
of the previous section with appropriate assertion Pred. The only place where
malloc is called is in block nxt0 of copy. Inspecting the assertion at that place
and the spec template, we instantiate Pred appropriately to get the actual spec.
Although free is called only once in program copy (in block nxt1), it has another
call-site in block more of malloc. Thus for any block of free, there are two
instantiated specs, one customized for copy (A1) and the other for malloc (A2).
The actual spec that we use is the disjunction of these two (A1 ∨A2).

The well-formedness of the program can be derived from the well-formedness
of all the code blocks. We follow the proof outline in Figure 11 to handle the
blocks of copy. For the blocks of routine malloc, we directly import their well-
formedness theorems described in the previous section. Proving the premises of
these theorems (e.g., Ainit=⇒Ψ(init)) is trivial (e.g., Ainit is exactly Ψ(init)).
For routine free whose spec has a disjunction form, we apply Rule 12 to break
up the disjunction and apply the theorems twice. Proving the premises of these

Pair p x q ≡ ∀(H,R).∃lnk.∃siz. (H(p) = x) ∧ (H(p+ 1) = q)
∧(MBlk p lnk siz) ∧ (siz − 2 ≥ 2)

Slist ε p q ≡ emp∧(p = q)
Slist (x·α) p q ≡ ∃p′.(Pair p x p′)*(Slist α p′ q)

Fig. 8. Pair and Slist.

theorems involves or-elimination of the form A1 =⇒A1 ∨A2, which is also triv-
ial. We refer interested readers to our implementation [21] for the exact details.

6 Related Work and Future Work

Dynamic storage allocation Wilson et al. [22] categorized allocators based on
strategies (which attempt to exploit regularities in program behavior), place-
ment policies (which decide where to allocate and return blocks in memory),
and mechanisms (which involve the algorithms and data structures that im-
plement the policy). We believe that the most tricky part in certifying various
allocators is on the low-level mechanisms, rather than the high-level strategies
and policies. Most allocators share some subsidiary techniques, such as splitting
and coalescing. Although we only provided a single allocation library implement-
ing a particular policy, the general idea used to certify the techniques of splitting
and coalescing can be applied to implement other policies.

Hoare logic Our logic reasonings about memory properties directly follow Reynolds’
separation logic [19, 18]. However, being at an assembly level, CAP has some
advantages in the context of mechanical proof-checking. CAP provides a fixed
number of registers. So the dynamic state is easier to model than using infi-
nite number of variables, and programs are free of variable shadowing. Being
at a lower-level implies that the compiler is easier to build, hence it engages a
smaller Trusted Computing Base (TCB). Defining assertions as CiC terms of
type State→Prop, as opposed to defining assertions syntactically, is also crucial
for mechanical proof-checking and thus for PCC. Another difference is that we
establish the soundness property using a syntactic approach.

Filliâtre [5, 6] developed a software certification tool Why which takes an-
notated programs as input and outputs proof obligations based on Hoare logic
for proof assistants Coq and PVS. It is possible to apply Why in the PCC
framework, because the proof obligation generator is closely related to the veri-
fication condition generator of PCC. However, it is less clear how to apply Why
to Foundational PCC because the proof obligation generator would have to be
trusted. On the other hand, if Why is applied to certify memory management, it
is very likely to hit problems such as expressing inductively defined assertions.
Our treatment of assertions in mechanical proof-checking can be used to help.

Certifying compilation This paper is largely complementary to existing work
on certifying compilation [16, 12, 3, 1]. Existing work have only focused on pro-

grams whose safety proofs can be automatically generated. On contrast, we
support general properties and partial program correctness, but we rely on the
programmer to construct the proof. Nevertheless, we believe this is necessary for
reasoning about program correctness. Automatic proof construction is infeasible
because the problem in general is undecidable. Our language can be used to for-
mally present the reasonings of a programmer. With the help of proof-assistants,
proof construction is not difficult, and the result can be mechanically checked.

Future work Exploring the similarity appeared between Hoare-logic systems and
type systems, we intend to model types as assertion macros in CAP to ease the
certifying task. For instance, a useful macro is the type of a memory block
(MBlk). With lemmas (c.f., typing rules) on how this macro interacts with com-
mands, users can propagate it conveniently. If one is only interested in common
properties, (e.g., operations are performed only on allocated blocks), it is promis-
ing to achieve proof construction with little user directions, or automatically.

In the future, it would be interesting to develop high-level (e.g., C-like or
Java-like) surface languages with similar explicit specifications so that programs
are written at a higher-level. “Proof-preserving” compilation from those lan-
guages to CAP may help retain a small trusted computing base.

7 Conclusion

Existing certifying compilers have only focused on programs whose safety proofs
can be automatically generated. In complementary to these work, we explored in
this paper how to certify general properties and program correctness in the PCC
framework, letting programmers provide proofs with help of proof assistants. In
particular, we presented a certified library for dynamic storage allocation — a
topic hard to handle using conventional type systems. The logic reasonings on
memory management largely follow separation logic. In general, applying Hoare-
logic reasonings in the PCC framework yields interesting possibilities.

References

1. A. W. Appel. Foundational proof-carrying code. In Proc. 16th Annual IEEE
Symposium on Logic in Computer Science, pages 247–258, June 2001.

2. A. W. Appel and E. W. Felten. Models for security policies in proof-carrying
code. Technical Report CS-TR-636-01, Princeton Univ., Dept. of Computer Sci-
ence, Mar. 2001.

3. C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A certifying compiler
for Java. In Proc. 2000 ACM Conf. on Prog. Lang. Design and Impl., pages 95–107,
New York, 2000. ACM Press.

4. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95–120, 1988.

5. J.-C. Filliâtre. Verification of non-functional programs using interpretations in
type theory. Journal of Functional Programming (to appear), 2001.

6. J.-C. Filliâtre. The WHY certification tool, tutorial and reference manual. http:

//why.lri.fr/, July 2002.
7. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, Oct. 1969.
8. C. A. R. Hoare. Proof of a program: FIND. Communications of the ACM, Jan.

1971.
9. W. A. Howard. The formulae-as-types notion of constructions. In To H.B.Curry:

Essays on Computational Logic, Lambda Calculus and Formalism. Academic Press,
1980.

10. B. W. Kernighan and D. M. Ritchie. The C Programming Language (Second
Edition). Prentice Hall, 1988.

11. D. E. Knuth. The Art of Computer Programming (Second Edition), volume 1.
Addison-Wesley, 1973.

12. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. In Proc. 25th ACM Symp. on Principles of Prog. Lang., pages 85–97.
ACM Press, Jan. 1998.

13. G. Necula. Proof-carrying code. In Proc. 24th ACM Symp. on Principles of Prog.
Lang., pages 106–119, New York, Jan. 1997. ACM Press.

14. G. Necula. Compiling with Proofs. PhD thesis, School of Computer Science,
Carnegie Mellon Univ., Sept. 1998.

15. G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proc.
2nd USENIX Symp. on Operating System Design and Impl., pages 229–243, 1996.

16. G. Necula and P. Lee. The design and implementation of a certifying compiler.
In Proc. 1998 ACM Conf. on Prog. Lang. Design and Impl., pages 333–344, New
York, 1998.

17. C. Paulin-Mohring. Inductive definitions in the system Coq—rules and properties.
In M. Bezem and J. Groote, editors, Proc. TLCA, volume 664 of LNCS. Springer-
Verlag, 1993.

18. J. C. Reynolds. Lectures on reasoning about shared mutable data structure. IFIP
Working Group 2.3 School/Seminar on State-of-the-Art Program Design Using
Logic, Tandil, Argentina, September 6-13, 2000.

19. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings Seventeenth Annual IEEE Symposium on Logic in Computer Science,
Los Alamitos, California, 2002. IEEE Computer Society.

20. The Coq Development Team. The Coq proof assistant reference manual. The Coq
release v7.1, Oct. 2001.

21. The FLINT Project. Coq implementation for certified dynamic storage allocation.
http://flint.cs.yale.edu/flint/publications/cdsa.html, Oct. 2002.

22. P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation:
A survey and critical review. In Proc. Int. Workshop on Memory Management,
Kinross Scotland (UK), 1995.

23. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

A Annotated Programs

free : {(MBlk fptr) ∗ (Good flist)
∗Pred ∧ R(r0) = f}

subi hp, fptr, 2;
movi prev, nil;
mov p, flist;
{(MBlk (hp+ 2)) ∗ (MidL flist prev p)
∗Pred ∧ R(r0) = f ∧ (prev = nil)}

jd iter;

next : {(MBlk (hp+ 2)) ∗ (MidL flist prev p)
∗Pred ∧ R(r0) = f ∧ (p 6= nil)
∧(prev < hp ∨ prev = nil)}

bgt p, hp, tryh;
{(MBlk (hp+ 2)) ∗ (MidL flist prev p)
∗Pred ∧ R(r0) = f ∧ (p < hp) ∧ (p 6= nil)}

mov prev, p;
ld p, p(link);
{(MBlk (hp+ 2)) ∗ (MidL flist prev p)
∗Pred ∧ R(r0) = f ∧ (prev < hp)}

jd iter;

njhi : {(MBlk (hp+ 2) s) ∗ (MidL flist prev p)
∗Pred ∧ R(r0) = f ∧ (p > hp+ s)
∧(prev < hp ∨ prev = nil)}

st hp(link), p;
{(MBlk (hp+ 2) p s) ∗ (EndL flist prev p)
∗(MBlkLst n p nil) ∗ Pred
∧R(r0) = f ∧ (hp < p)
∧(prev < hp ∨ prev = nil)}

jd tryl;

tryl : {(EndL flist prev) ∗ Pred
∗(MBlkLst (n+ 1) hp nil)
∧R(r0) = f ∧ (prev < hp ∨ prev = nil)}

bgti prev, nil, lnkl;
{(EndL flist prev) ∗ Pred
∗(MBlkLst (n+ 1) hp nil)
∧R(r0) = f ∧ (prev = nil)}

mov flist, hp;
{(Good flist) ∗ Pred ∧ R(r0) = f}
jmp r0;

njlo : {(MBlkLst m flist prev)
∗(MBlk (prev + 2) prevsize)
∗(MBlkLst (n+ 1) hp nil) ∗ Pred
∧R(r0) = f ∧ (prev < hp)
∧(prev + prevsize < hp)}

st prev(link), hp;
{(Good flist) ∗ Pred ∧ R(r0) = f}
jmp r0;

iter : {(MBlk (hp+ 2)) ∗ Pred
∗(MidL flist prev p) ∧ R(r0) = f

∧(prev < hp ∨ prev = nil)}
bgti p, nil, next;
st hp(link), p;
jd tryl;

tryh : {(MBlk (hp+ 2)) ∗ Pred
∗(MidL flist prev p) ∧ R(r0) = f

∧(p 6= nil) ∧ (hp < p)
∧(prev < hp ∨ prev = nil)}

ld cursize, hp(size);
add curend, hp, cursize;
bgt p, curend, njhi;
{(MBlk (hp+ 2) cursize) ∗ Pred
∗(MidL flist prev p) ∧ R(r0) = f

∧(prev < hp ∨ prev = nil)
∧(p = hp+ cursize 6= nil)}

ld psize, p(size);
add newsize, cursize, psize;
st hp(size), newsize;
ld plink, p(link);
st hp(link), plink;
{(MBlk (hp+ 2) q) ∗ Pred
∗(EndL flist prev p)
∗(MBlkLst n q nil) ∧ R(r0) = f

∧(prev < hp ∨ prev = nil)
∧(hp < q ∨ q = nil)}

jd tryl;

lnkl : {(MBlkLst m flist prev)
∗(MBlk (prev + 2) s) ∧ R(r0) = f

∗(MBlkLst (n+ 1) hp nil) ∗ Pred
∧(prev < hp) ∧ (prev 6= nil)}

ld prevsize, prev(size);
add prevend, prev, prevsize;
bgt hp, prevend, njlo;
{(MBlkLst m flist prev)
∗(MBlk (prev + 2) prevsize)
∗(MBlkLst (n+ 1) hp nil) ∗ Pred
∧R(r0) = f ∧ (prev < hp)
∧(prev + prevsize = hp)}

ld cursize, hp(size);
add newsize, prevsize, cursize;
ld curlink, hp(link);
st prev(size), newsize;
st prev(link), curlink;
{(Good flist) ∗ Pred ∧ R(r0) = f}
jmp r0;

where link ≡ 0, size ≡ 1 and nil ≡ 0; variables are shorthands for registers.

Fig. 9. Annotated program of free.

malloc : {Pred ∗ (Good flist)
∧(nsize = s0 > 0) ∧ R(r1) = f}

addi bsize, nsize, 2;
jd init;

init : {Pred ∗ (Good flist)
∧(0 < s0 + 2 ≤ bsize) ∧ R(r1) = f}

movi prev, nil;
mov p, flist;
{Pred ∗ (MidL flist prev p)
∧(0 < s0 + 2 ≤ bsize) ∧ R(r1) = f}

jd miter;

miter : {Pred ∗ (MidL flist prev p)
∧(0 < s0 + 2 ≤ bsize) ∧ R(r1) = f}

bgti p, nil, comp;
bgt NALLOC, bsize, mod;
{Pred ∗ (Good flist)
∧(0 < s0 + 2 ≤ bsize) ∧ R(r1) = f}

mov bbsize, bsize;
jd more;

comp : {Pred ∗ (MidL flist prev p) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize) ∧ (p 6= nil)}
ld psize, p(size);
addi ebsize, bsize, 2;
bgt psize, ebsize, split;
{Pred ∗ (EndL flist prev p)
∗(MBlk (p+ 2) q psize) ∗ (MBlkLst n q nil)
∧(0 < s0 + 2 ≤ bsize) ∧ R(r1) = f

∧(p < q ∨ q = nil)}
bgt bsize, psize, mnext;
{Pred ∗ (EndL flist prev p)
∗(MBlk (p+ 2) q psize)
∗(MBlkLst n q nil)
∧(s0 + 2 ≤ bsize ≤ psize) ∧ R(r1) = f

∧(p < q ∨ q = nil)}
ld plink, p(link);
bgti prev, nil, lprv;
{Pred ∗ (EndL flist nil p)
∗(MBlk (p+ 2) plink psize)
∗(MBlkLst n plink nil)
∧(s0 + 2 ≤ psize) ∧ R(r1) = f}

mov flist, plink;
{Pred ∗ (MBlk (p+ 2) plink psize)
∗(MBlkLst n flist nil)
∧(s0 + 2 ≤ psize) ∧ R(r1) = f}

jd retptr;

retptr : {Pred ∗ (Good flist) ∗ (MBlk (p+ 2) s)
∧(s0 + 2 ≤ s) ∧ R(r1) = f}

addi mptr, p, 2;
{Pred′ ∗ (Good flist) ∗ (MBlk mptr s)
∧(s0 + 2 ≤ s) ∧ R(r1) = f}

jmp r1;

mod : {Pred ∗ (Good flist) ∧ R(r1) = f∧
(0 < s0 + 2 ≤ bsize < NALLOC)}

mov bbsize,NALLOC;
jd more;

split : {Pred ∗ (EndL flist prev p)
∗(MBlk (p+ 2) q psize)
∗(MBlkLst n q nil) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize < psize− 2)
∧(p < q ∨ q = nil)}

sub psize, psize, bsize;
st p(size), psize;
add p, p, psize;
st p(size), bsize;
{Pred ∗ (EndL flist prev p′)
∗(MBlk (p′ + 2) q (psize− bsize))
∗(MBlk (p+ 2) bsize)
∗(MBlkLst n q nil) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize < psize− 2)
∧(p′ < q ∨ q = nil)}

jd retptr;

mnext : {Pred ∗ (EndL flist prev p)
∗(MBlk (p+ 2) q s)
∗(MBlkLst n q nil) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize)
∧(p < q ∨ q = nil)}

mov prev, p;
ld p, p(link);
{Pred ∗ (EndL flist prev p)
∗(MBlkLst n p nil) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize)}
jd miter;

lprv : {Pred ∗ (EndL flist prev p)
∗(MBlk (p+ 2) plink s)∗
(MBlkLst n plink nil) ∧ R(r1) = f

∧(s0 + 2 ≤ s) ∧ (prev 6= nil)
∧(p < plink ∨ plink = nil)}

st prev(link), plink;
{Pred ∗ (EndL flist prev plink)
∗(MBlk (p+ 2) plink s)
∗(MBlkLst n plink nil)
∧(s0 + 2 ≤ s) ∧ R(r1) = f}

jd retptr;

more : {Pred ∗ (Good flist) ∧ R(r1) = f

∧(0 < s0 + 2 ≤ bsize ≤ bbsize)}
alloc newp[bbsize];
st newp(size), bbsize;
addi fptr, newp, 2;
movi r0, init;
{(Good flist) ∗ (MBlk fptr bbsize)
∗Pred ∧ (0 < s0 + 2 ≤ bsize)
∧R(r1) = f ∧ R(r0) = init}

jd free;
where link ≡ 0, size ≡ 1 and nil ≡ 0; variables are shorthands for registers.

Fig. 10. Annotated program of malloc.

copy : {∃α. (Slist α src nil) ∗ (Good flist)
∧(α = α0)}

movi tgt, nil;
movi cprev, nil;
jd test;

test : {(((cprev = nil)
⊃∃α. (Slist α src nil) ∧ (α = α0)
∧(tgt = nil))

∧((cprev 6= nil)
⊃∃α. ∃β.∃b. (β ·b·α = α0)
∧(Slist α src nil) ∗ (Slist β tgt cprev)
∗(Pair cprev b src)))

∗(Good flist)}
bgti src, nil, nxt0;
jd halt;

nxt0 : {(((cprev = nil)
⊃∃a. ∃α. ∃i. (Pair src a i) ∗ (Slist α i nil)
∧(a·α = α0) ∧ (tgt = nil))

∧((cprev 6= nil)
⊃∃a. ∃α. ∃β.∃b.∃i. (β ·b·a·α = α0)
∧(Pair src a i) ∗ (Slist α i nil)
∗(Slist β tgt cprev)
∗(Pair cprev b src)))

∗(Good flist)}
movi nsize, 2;
movi r1, nxt1;
{(((cprev = nil)
⊃∃a. ∃α. ∃i. (Pair src a i) ∗ (Slist α i nil)
∧(a·α = α0) ∧ (tgt = nil))

∧((cprev 6= nil)
⊃∃a. ∃α. ∃β.∃b.∃i. (β ·b·a·α = α0)
∧(Pair src a i) ∗ (Slist α i nil)
∗(Slist β tgt cprev)
∗(Pair cprev b src)))

∗(Good flist) ∧ (nsize = 2) ∧ (r1 = nxt1)}
jd malloc;

lnkp : {(((cprev 6= nil)
∧∃a. ∃α. ∃β.∃b. (Pair mptr a src)
∗(Slist α src nil) ∗ (Slist β tgt cprev)
∗(Pair cprev b fptr) ∧ (β ·b·a·α = α0)))

∗(Good flist)}
st cprev(1),mptr;
mov cprev,mptr;
{(((cprev 6= nil)
∧∃a. ∃α. ∃β. (Pair cprev a src)
∗(Slist α src nil)
∗(Slist β tgt cprev) ∧ (β ·a·α = α0)))

∗(Good flist)}
jd test;

halt : {∃β. (Slist β tgt nil) ∗ (Good flist)
∧(β = α0)}

jd halt;

nxt1 : {(((cprev = nil)
⊃∃a. ∃α. ∃i. (Pair src a i)
∗(Slist α i nil) ∧ (a·α = α0)
∧(tgt = nil))

∧((cprev 6= nil)
⊃∃(a, α, β, b, i). (β ·b·a·α = α0)
∧(Pair src a i) ∗ (Slist α i nil)
∗(Slist β tgt cprev)
∗(Pair cprev b src)))

∗(Good flist) ∗ (MBlk mptr siz)
∧(siz ≥ 4)}

ld temp, src(0);
st mptr(0), temp;
mov fptr, src;
ld src, src(1);
st mptr(1), src;
movi r0, nxt2
{(((cprev = nil)
⊃∃a. ∃α. (Pair mptr a src)
∗(Slist α src nil) ∧ (a·α = α0)
∧(tgt = nil))

∧((cprev 6= nil)
⊃∃a. ∃α. ∃β.∃b. (β ·b·a·α = α0)
∧(Pair mptr a src)
∗(Slist α src nil)
∗(Slist β tgt cprev)
∗(Pair cprev b fptr)))

∗(MBlk fptr) ∗ (Good flist)
∧(r0 = nxt2)}

jd free;

nxt2 : {(((cprev = nil)
⊃∃a. ∃α. (Pair mptr a src)
∗(Slist α src nil) ∧ (a·α = α0)
∧(tgt = nil))

∧((cprev 6= nil)
⊃∃a. ∃α. ∃β.∃b. (β ·b·a·α = α0)
∧(Pair mptr a src)
∗(Slist α src nil)
∗(Slist β tgt cprev)
∗(Pair cprev b fptr)))

∗(Good flist)}
bgti cprev, nil, lnkp;
{∃a. ∃α. (Pair mptr a src)
∗(Slist α src nil) ∧ (a·α = α0)
∧(tgt = nil)
∗(Good flist) ∧ (cprev = nil)}

mov tgt,mptr;
mov cprev, tgt;
{∃a. ∃α. (Pair cprev a src)
∗(Slist α src nil) ∧ (a·α = α0)
∧(cprev = tgt)
∗(Good flist) ∧ (cprev 6= nil)}

jd test;

where nil ≡ 0; variables are shorthands for registers.

Fig. 11. Annotated program of copy: copies a null-terminated list from src to tgt.

