
Abstract

A Syntactic Approach to Foundational Proof-Carrying Code

Nadeem Abdul Hamid

2005

Certified code technology and type systems research has reached a point where it is now

possible to certify advanced safety and security properties of low-level systems code.

Type systems are a common programming language feature today, allowing fast and

easy verification of basic safety properties for application developers. Although verifi-

able bytecode and typed common intermediate languages have made significant contri-

butions in the area of secure computing, a considerable amount of further (unverified)

compilation and optimization is required before programs written in such languages can

run on actual hardware. To address this issue, research in the past decade has turned

to the use of type systems and logic to verify properties of low-level code. Much of this

work focuses only on carrying through the compilation of high-level languages down to

verifiable machine code. There has not been significant progress in combining such com-

pilation with verification and certification of that code which is only written at the systems

programming and assembly code level. Indeed, providing security guarantees for such

infrastructure code has become a dire need.

This thesis aims at a framework to certify “the whole code.” It presents an approach

by which well-typed, high-level programs are compiled to certified machine code. In the

same framework, the runtime library and operating systems components such as memory

management can be certified safe at the level of assembly code. Now, the complete combi-

nation of compiled high-level code and low-level system libraries can be verified for safe

operation according to a user’s safety policy. To enable this development, I develop a new

alternative for producing foundational proof-carrying code (FPCC), utilizing a syntactic

encoding of the high-level type system along with syntactic soundness proofs.

2

The first part of this thesis describes a monolithic compilation scheme from a high-

level type system to FPCC, utilizing the syntactic method. In the second part, I refine the

framework to produce localized invariants, allowing for interoperation between different

source languages. Finally, I demonstrate an application of the framework to a typed as-

sembly language with a region-based memory management library, where the library is

certified using low-level Hoare logic reasoning.

A Syntactic Approach to

Foundational Proof-Carrying Code

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Nadeem Abdul Hamid

Dissertation Director: Zhong Shao

May 2005

A Syntactic Approach to Foundational Proof-Carrying Code

Copyright c© 2005 by Nadeem Abdul Hamid

All rights reserved.

Contents

Acknowledgments v

1 Introduction 1

1.1 Proof-Carrying Code . 2

1.2 Traditional Proof-Carrying Code . 7

1.3 Foundational Proof-Carrying Code (Semantic Approach) 10

1.4 Dissertation Contributions and Outline . 15

2 A Machine and Logic for Foundational Proof-Carrying Code 18

2.1 An Idealized Machine . 19

2.2 The Logic and Safety Condition . 21

2.2.1 The Calculus of Inductive Constructions 21

2.2.2 Representing Proofs and Coq Syntax 23

2.2.3 Defining Safety . 25

2.2.4 Generating Proofs . 26

3 A Syntactic Approach to Foundational Proof-Carrying Code 29

3.1 Featherweight Typed Assembly Language . 29

3.1.1 Syntax . 31

3.1.2 Dynamic Semantics . 32

3.1.3 Static Semantics . 34

3.1.4 Examples . 38

i

3.1.5 Soundness . 39

3.1.6 Designing TAL for FPCC . 44

3.2 Translating FTAL to FPCC . 45

3.2.1 From FTAL to Machine State . 45

3.2.2 The Global Invariant . 47

3.2.3 The Preservation and Progress Properties 49

3.3 Implementation in Coq . 52

3.3.1 Encoding Machine Semantics . 53

3.3.2 Encoding FTAL Syntax . 54

3.3.3 Encoding FTAL Semantics and Soundness 57

3.3.4 Encoding FPCC Preservation and Progress 62

3.3.5 Generating the Initial Condition . 62

3.3.6 The Complete System . 63

3.4 Summary . 64

4 Interfacing Type Systems and Certified Machine Code 65

4.1 A Language for Certified Machine Code (CAP) 68

4.1.1 Inference Rules . 71

4.1.2 Safety Properties . 72

4.2 The Code Pointer Problem . 74

4.3 Extensible Typed Assembly Language with Runtime System 78

4.3.1 Syntax . 78

4.3.2 Static and Dynamic Semantics . 79

4.3.3 External Code Stub Interfaces . 81

4.3.4 Soundness . 82

4.4 Compilation and Linking . 83

4.4.1 The Runtime System . 83

4.4.2 Translating XTAL Programs to CAP 84

ii

4.4.3 Generating the CAP Proofs . 87

4.4.4 arrayget Example . 93

4.5 Summary . 96

5 A Certified Memory-Management Framework 97

5.1 Typed Assembly Language with Regions . 99

5.1.1 RgnTAL Syntax . 99

5.1.2 Dynamic Semantics . 110

5.1.3 Static Semantics . 111

5.2 Soundness . 117

5.3 Compilation and Runtime Library . 118

5.3.1 Specifying the Translation of Programs to Machine States 118

5.3.2 Safety Policy, Invariants, and Proofs 125

5.3.3 Region-based Memory Management Library 128

5.4 Summary . 136

6 Tools and Techniques 137

6.1 Proof Development and Automation . 137

6.2 Inductive Types, Impredicativity, and Encoding Polymorphism 141

6.3 Coq Encodings and Adequacy . 147

6.4 Function Pointers, Mutable Memory, and Reflection 151

7 Related Work 155

7.1 Proof-Carrying Code . 155

7.2 Typed Assembly Languages and Region Type Systems 158

7.3 Encoding Object Languages with Variable Binding 159

7.4 Low-level Reasoning and Separation Logic 160

8 Future Work and Conclusion 163

8.1 Limitations and Future Work . 164

iii

8.2 Conclusion . 167

A Coq Files for the Syntactic Approach to Foundational Proof-Carrying Code 168

A.1 An Idealized Machine for FPCC . 168

A.2 Featherweight Typed Assembly Language . 170

A.3 Translation to Machine State . 195

B Coq Files for Region-Based TAL and Runtime System 209

B.1 The CAP specification layer . 209

B.2 RgnTAL Syntax . 213

B.3 RgnTAL Operational Semantics . 219

B.4 RgnTAL Static Semantics . 222

B.5 RgnTAL Soundness Proofs . 230

B.6 Translating RgnTAL to CAP . 240

B.7 Correctness of RgnTAL to CAP Translation 248

B.8 RgnTAL Runtime System . 255

C Computing Fibonacci Numbers in RgnTAL 263

Bibliography 269

iv

Acknowledgments

I have little hope of being able to adequately acknowledge all those who have helped
me make this dissertation possible. Nonetheless, I start with my advisor Zhong Shao,
who, for the last five years, has given me constant encouragement and more to explore
and develop this area of research. Without his guidance and an occassional push, I would
not have achieved these results. Towards developing my understanding of formal meth-
ods, Valery Trifonov has been a valuable resource. I have turned to him many times to
unravel the intricacies of formal systems. My officemate, Dachuan Yu, has traveled much
of the same journey with me over these past several years, and I benefitted mutually from
many discussions with him and others in the Flint group at Yale, including Chris League,
Stefan Monnier, and Zhaozhong Ni. Albeit perhaps to a lesser degree, I have found the
other faculty in the Computer Science department supportive in many ways. And I am
indebted to the secretarial staff for helping relieve administrative and bureaucratic bur-
dens. I am grateful towards Arvind Krishnamurthy, Carsten Schürmann, and Peter Lee
for agreeing to serve on my thesis committee.

Going beyond the immediate past, I truly appreciate all the support and encour-
agement received from my undergraduate professors and even secondary and primary
school instructors. Without their efforts I would not have attained this level of achieve-
ment. Of special mention are Alice Fischer, Barun Chandra, and, of course, Jim Sweet.
Many others contributed no less but were I to list them all, this would become a very long
section.

Much is due to my family and community for their constant prayers and, well, for just
being there. And, finally, no words can express what my parents, Abdul and Bonnie Lynn
Hamid, have done for me.

All praise, then, to Allah, the Lord of the heavens and the Lord of the earth,
the Lord of the worlds. His alone is the Majesty in the heavens and the earth,

and He is the Mighty, the Wise.
(Qur’an 45:37-38)

0This research is based on work supported in part by DARPA OASIS grant F30602-99-1-0519, NSF grant
CCR-9901011, NSF ITR grant CCR-0081590, and NSF grant CCR-0208618. Any opinions, findings, and con-
clusions contained in this document are those of the authors and do not reflect the views of these agencies.

v

Chapter 1

Introduction

At 11:30 p.m. EST on January 3, 2004, the Mars Exploration Rover “Spirit” sent its first ra-

dio signal to NASA scientists following its initial impact on the surface of the Red Planet.

Then, after two weeks of exciting image gathering and exploration activities, a break-

down in communication occurred during which scientists would receive no more than a

simple communication tone, indicating a serious anomaly aboard the spacecraft. It took

10 days of long-distance diagnostics and debugging to finally restore the rover to health

again. Scientists determined that thousands of old files had accumulated in Spirit’s flash

memory and the onboard software was having difficulty managing the memory short-

age situation, resulting in a complete reboot of the rover’s computer about once every

hour [53].

A certain amount of Spirit’s onboard memory is dedicated to its real-time operating

system and assorted science applications, the rest is used to store acquired data. As the

mission progressed, technicians were supposed to periodically download and delete old

data files to free up data memory for reuse, but apparently this step had not been per-

formed fast enough in the excitement of the Mars landing [87].

Despite claims that it was a “system constraint” and not a hardware or application

bug, it seems very strange that the computer software embedded in such a precious ma-

chine had not taken into account the occurence of such a memory shortage scenario. Per-

1

haps the possibility had risen in the minds of the programmers or system designers, but

the proper checks to ensure that it did not happen, and to handle the situation automati-

cally if a critical memory shortage was imminent, were not put into the code.

It would certainly be ideal that a set of appropriate safety specifications be provided

with embedded operating systems code, such as that on the Mars rover, along with a

guarantee that the actual code satisfies and conforms to those specifications. In fact, a

framework to handle such system safety and integrity concerns using techniques from

mathematical logic and programming language semantics has already been developed in

the form of proof-carrying code [55]. In this dissertation, I will be contributing a new design

to the proof-carrying code (PCC) framework, allowing for certification of safety properties

for code written in different high- and low-level programming languages and integrated

together to form a complete runtime system.

1.1 Proof-Carrying Code

Proof-Carrying Code (PCC) was initially developed in the context of network packet fil-

ters [56]. The basic idea of PCC, as the name implies, is that a piece of executable code

comes packaged with a proof of its safety. A diagram of a PCC system is given in Fig-

ure 1.1. In a PCC system, there are typically two main entities, (1) a code producer, who

transforms a source code program into compiled machine code along with its safety proof,

and (2) a code consumer, who wishes to run the compiled code as long as it satisfies the

safety policy.

While the main subject of this dissertation is the mechanism by which safety proofs are

generated and checked, I will briefly review here what a safety policy is. Although a code

consumer may ideally wish to specify that the code should do exactly what it is supposed

to do, this is usually impractical for any programs other than short, trivial ones. The

task of (formally) specifying everything that a large, complex piece of code is expected to

accomplish is much too hard and open to error anyway. Instead, the code consumer could

2

Binary
Code

Safety
Proof

Proof CheckerProof
Generator

Compiler

CPU

Safety
Policy

Logic
System
Type

Source Program
Code

Code ConsumerCode Producer

Safe
?

Figure 1.1: A (foundational) proof-carrying code system.

3

define a set of restrictions on execution– a security policy [71] defining what code behavior

is unacceptable. There are then a variety of types of security policies that may be applied

– e.g. access control, information flow, and availability. For this thesis, I will be using only

access control policies, which restrict the operations that principals (e.g. blocks of code)

can perform on objects (e.g. computer memory). In the terminology of [44], this means to

specify safety properties of code – policies stating that no “bad thing” must happen during

execution.

In the first part of this dissertation, I will be using a simple safety policy that only

requires code never reach an illegal or non-decodable instruction. Later on, in Chapter 5,

I will extend the policy to restrict memory accesses. Throughout, I assume a system in

which the safety policy is fixed ahead of time and known to all parties. The issue of

generating PCC packages where the code producer does not know the consumer’s safety

policy ahead of time is a topic of ongoing and future research. Furthermore, it should

be noted that some part of the framework described in this thesis, developed jointly with

Yu [97, 98], has been used to specify and prove more advanced security and correctness

properties of low-level system code [97, 98, 99].

Returning to Figure 1.1, note that as usual with PCC, the code component that ac-

companies the safety proof is actual machine code. More accurately, the code binary is

a representation of the machine state – memory and registers – at program startup. Al-

though the ideas of PCC can be applied to code at higher levels, we will concentrate on

producing proofs at the lowest level of the machine.1 The motivation for this is based

on a desire to reasonably minimize the trusted computing base (TCB) of the PCC system.

The TCB is the totality of protection mechanisms within a computer system, including

hardware, firmware, and software, the combination of which is responsible for enforcing

a security policy. The smaller the mechanisms in this set are, the easier it is to verify them

and the more confident one may be that they will operate correctly.
1In fact, the development of PCC followed a progression of research in the areas of higher level type

systems and type-preserving compilation. See Chapter 7 for related works in these areas.

4

Source Program
Code

Binary
Code

CPU

Type
System

Type Checker /Compiler

Figure 1.2: A conventional compilation system.

To understand this, consider the diagram of a “conventional” compilation system in

Figure 1.2. If we are using a strongly typed language, like Java or ML, then all the com-

ponents in the figure with which the original program source code interacts are in the

TCB. We must trust that the type system is correct in that well-typed programs will not

get stuck when compiled and run on the CPU. Then, we must trust that the type checker

correctly implements the type system, and that the compiler will not introduce any bugs

in the compiled binary. Finally, we must trust that the machine hardware will actually

work according to specifications and execute the binary code as expected.

In Figure 1.2, one of the most error-prone components is the compiler. Compilers

are large, complicated pieces of code themselves and are extremely likely to produce erro-

neous output at some point of transforming and optimizing program code. One approach

to dealing with this is to somehow verify the compiler to obtain a formal guarantee that it

will always work correctly. PCC takes quite a different approach, which is to remove the

compiler from the TCB entirely. Hence, the situation in Figure 1.1, where the compiler is

not part of the code consumer’s TCB. Ideally, the TCB of such a system is composed of the

following:

1. Hardware - My research concentrates entirely on certifying software components so

5

we take it for granted that the actual machine hardware will operate as expected.

2. Logic - The safety policy and proofs of safety must be expressed in some formal logic.

The logic should have appropriately “good” qualities – for instance, consistency:

that one cannot prove a statement and its negation at the same time. Proving such

desirable properties of a logic is done by hand and we must trust that such proofs

are correct. The smaller and simpler the logic we use, the more confidence we may

have in its soundness properties. This is a very important issue for PCC, and we

will later cite an example of using an unsound logic, which completely undermines

the safety properties of the entire system.

3. Proof checker - The proof checker is a software implementation of the PCC logic. It

allows one to express statements in the syntax of the logic and mechanically check

proofs, which are a series of applications of the logical inference rules. Assuming

a logic has all the desirable properties, we must trust that the proof checker imple-

mentation is correct. The checker is, however, a much smaller program than even a

simple compiler, so it is feasible for a human to inspect and verify. Though I have

not focused on an absolutely minimal proof checker for my current work, Appel and

Michael [6] have aggressively pursued this aspect of the TCB in related PCC work.

4. Safety Policy - The final trusted component of the ideal PCC system is the definition

of safety. This is expressed in the syntax of the logic and must be satisfied before

code will be allowed to execute. The safety policy component may actually be made

up in turn of several pieces:

(a) Machine encoding - Within the PCC logic, one must provide a specification of

the physical machine hardware and its operational semantics. This encoding

must match the actual behavior of the machine.

(b) Decoder - Code to convert between the actual machine state and the encoding

in the logic.

6

(c) Specification of the actual policy, in terms of the machine encoding (a). I have

already given above an overview of the type of policies I will work with. For

more concrete definitions see Sections 2.2.3 or 5.3.2.

Thus, the components to the right of the vertical line in Figure 1.1 make up the ideal

PCC trusted code base. On the left side, we do not care what the source program is,

or how the compiler and proof generator produce a code package, as long as our proof

checker verifies that the safety proof for the binary code satisfies the established policy.

I have been refering to Figure 1.1 as an “ideal” PCC diagram. The reason is that his-

torically the first developments of PCC included more components than these in the TCB.

I will now give an overview of “traditional” PCC, followed by the development of “foun-

dational” PCC, which corresponds more to Figure 1.1.

1.2 Traditional Proof-Carrying Code

The concept of proof-carrying code was first introduced by Necula and Lee [56, 54, 58].

Subsequent developments resulted in PCC-generating compilers for Java programs [15], a

subset of C, and a minimal subset of ML. A comprehensive overview of the initial system

can be found in Necula’s thesis [55]. The basic framework of Necula, et al. is diagrammed

in Figure 1.3.

Although it looks considerably more complicated than Figure 1.1, it must be noted

that this pioneering work focused very much on the practical aspects of implementing a

realistic framework. Thus, the Java system cited above could handle “real world” Java

programs of up to half a million lines of code [70]. Nonetheless, the emphasis on en-

gineering and scalability meant a larger TCB – and the possibility, and even discovered

presence, of security holes.

In the original PCC system, a certifying compiler takes a source program and produces

binary code along with annotations (such as loop invariants) to various instructions in

the code. These annotations are fed to a verification condition generator (VCGen) which

7

Binary
Code Proof

V.C.

Source Program
Code

Theorem
Prover

Certifying
compiler

Annotations

Proof Checker

CPU

Safety
Policy

Logic

Verif. Condition

Code Producer Code Consumer

Safe
?

Verif. Condition
Generator

System
Type

Figure 1.3: Original proof-carrying code system.

8

produces a set of conditions that must be shown to hold for the safety policy to be satisfied.

A proof of these verification conditions (VC) is then produced by an automatic theorem

prover (or even by hand). The binary code and the VC proof make up the PCC package.

In this setup, note that the proof provided does not directly show the safety policy is

satisfied. Instead, as the safety policy is implicitly defined by the way the VCGen works,

we must trust that the VCs produced imply the safety policy. But this is only proved “by

hand,” not formally (mechanically) as part of the framework. The VCGen itself is quite a

large and complex piece of code (23,000 lines of C code in [15]) to include in the TCB.

Finally, in the traditional PCC setup, the logic used is typically a standard mathemat-

ical logic extended with a number of type-system specific primitives. For example, [15]

uses first-order predicate logic enriched with Java-specific predicates and rules for ob-

jects, interfaces, methods, etc. The implication of this is that it is a much more difficult

and error-prone task to show that the logic satisfies the desirable properties alluded to

on page 6. Introducing type system primitives into a logic, along with associated rules of

inference, can lead to subtle interactions with the base logic and unsoundness. In [15] a

bug was found in the safety conditions for virtual method calls, documented by League,

et al. [45]. A malicious code producer could thus exploit such a security hole to get the

consumer to run completely unsafe code on his or her system.

Besides increasing the size of the TCB, the original framework for PCC limits the flex-

ibility of the system. In the previous paragraph I mention the use of a logic and VCGen

customized with Java-specific extensions. This means that the safety policy is expressed

in terms of Java constructs and it requires that the program code be annotated with Java

typing information. Thus, for compiling another source language, it is necessary to use a

completely different VCGen (and probably proof checker), which would result practically

in a proliferation of incompatible PCC compiler systems.

In order to alleviate the drawbacks discussed in the foregoing paragraphs, Appel et

al. [3] introduced the notion of foundational proof-carrying code (FPCC). This, in a sense,

purist approach corresponds more directly to Figure 1.1. Emphasizing a minimal TCB

9

– as opposed to rapid engineering of a full-scale, realistic system – FPCC removed the

VCGen and any type system-specific primitives from the right hand side of Figure 1.3.

However, developing safety proofs for such a framework was not straightforward– or so

it seemed at first. In the next section, I describe the development of the FPCC framework

by Appel et al. and then concluded the chapter with an overview of my alternative FPCC

framework and an outline of the rest of this thesis.

1.3 Foundational Proof-Carrying Code (Semantic Approach)

Foundational proof-carrying code (FPCC) [4, 3] focuses on constructing and verifying

proofs using strictly the foundations of mathematical logic, with no type system-specific

axioms or primitives. FPCC, in principle, is immediately more flexible and secure than

traditional PCC because it is not tied to any particular type system and has a smaller

trusted base (the VCGen is gone). For FPCC, the operational semantics of machine code as

well as the concept of safety are defined in a suitably expressive logic. The code producer

must provide both the executable code and a proof in the foundational logic that the code

satisfies the safety condition. Both the machine description and the proof must explicitly

define, down to the foundations of mathematics, all required concepts and must prove

any needed properties of these concepts.

Foundational proofs, however, are much harder to construct. Previous efforts on

FPCC [4, 25, 5, 2] all required constructing sophisticated semantic models to reason about

types. For example, to support contravariant recursive types, Appel and Felty [25] ini-

tially decided to model each type as a partial equivalence relation, but later found that

building the actual foundational proofs would “require years of effort implementing machine-

checked proofs of basic results in computability theory” [5, page 2]. Appel and McAllester [5]

later proposed an indexed model which significantly simplified the proofs but still in-

volves tedious reasoning of computation steps with each type being defined as a complex

set of indexed values. More seriously, none of these approaches could be easily extended

10

to support mutable fields. A solution for handling mutable fields was proposed later

by Ahmed et al. [2] – it involves building a hierarchy of Gödel numberings and making

extensive changes to semantic models used in existing FPCC systems [4, 5].

In the remainder of this section, I will compare the method of generating proofs in the

traditional VCGen-based framework and a semantic FPCC-based system. A concrete ex-

ample will hopefully clarify for the reader some aspects of the VCGen and PCC discussed

in the previous section, while also demonstrating complications that arise in the semantic

approach to FPCC.

Let us consider a hypothetical source code snippet that reads an element from a tuple:

(l1) val t : int × int := (3, 4);
...

(l2) val y : int := snd(t);

I will only concentrate on line (l2) here. A compiler might compile the assignment op-

eration on this line to a machine load instruction (or more accurately, the binary encoding)

such as ld ry, rt(1).

Now let us see how traditional PCC would produce a safety proof for this piece of

code. When this instruction is examined by the VCGen, the following obligation will be

produced as part of the VC [55, page 71]:

readable(M, R(rt) + 1)

That is, in the current memory, M, the address computed by the contents of register

rt incremented by 1 must be readable according to the safety policy. This VC term goes to

the PCC theorem prover. The PCC theorem prover implements a logic extended with type

system-specific primitives and inference rules. So, for example, the following inference

rule might be built into the theorem prover [54]:

M ` v : τ1 × τ2
readable(M, v) ∧ readable(M, v+ 1) ∧ M ` M(v) : τ1 ∧ M ` M(v + 1) : τ2

(1.1)

11

At the point that line (l2) is being processed, the prover will have the information

(e.g. from type annotations) that the content of register rt, R(rt), does have a tuple type,

int×int, with relation to the current memory, M. It then directly applies the inference

rule (1.1) to satisfy the necessary VC obligation.

In this example, the rule (1.1) is quite simple and we can imagine that adding tuple

type primitives to a logic will not be that dangerous. However, to handle more realistic

type systems, like Java’s, one would have to start including much more complex infer-

ence rules to the logic, VCGen, and theorem prover, resulting in the dangerous situation

described in Section 1.2.

Now let us see how (semantic) FPCC works. Instead of extending the logic with type

primitives, FPCC interprets types as predicates in the base logic:

dM ` v : τ1 × τ2e =def readable(M, v) ∧ readable(M, v+ 1)

∧ dM ` M(v) : τ1e ∧ dM ` M(v + 1) : τ2e

(1.2)

That is, the fact that data in memory has a tuple type in the source language is inter-

preted as the proposition on the right side of the definition above. A base case predicate

may be defined for the int type:

dM ` v : inte =def true (1.3)

And, the readable predicate itself may be defined using more primitive constructs of

the logic, such as requiring all readable addresses be less than 50:

readable(M, v) =def v < 50 (1.4)

Thus, for the code compiled from line (l2) in our example, we have the source typing

information,

M ` R(rt) : int× int

12

FPCC then interprets this as the following proposition (expanding all definitions, in-

cluding readable):

R(rt) < 50 ∧ R(rt) + 1 < 50 ∧ true ∧ true (1.5)

The FPCC consumer may specify a safety policy that all memory loads must only be

from addresses less than 50 (i.e. readable). Thus, the compiled binary code, ld ry, rt(1),

would clearly satisfy this requirement in the context of (1.5). Notice now that the FPCC

reasoning only involves normal arithmetic and logic operators. The logic is much smaller

and simpler, as will be the corresponding proof checker; and there is no VCGen at all. In

more proper notation, source code types are formalized as functions on sets. So, (1.2) and

(1.3) would be written as [3]:

dτ1 × τ2e(M)(v) =def readable(M, v) ∧ readable(M, v+ 1) . . .

dinte(M)(v) =def true

(1.6)

The logical type then of semantic interpretations of source code types such as int is a

predicate on a memory and integer value:

type = mem → val → prop

Now let us suppose tuple elements are mutable and consider a third source code line:

(l3) snd(t) := y;

which compiles to a machine store instruction, st rt(1), ry. Based on the source code,

we may assign types to the registers as follows:

M ` R(ry) : int (1.7)

M ` R(rt) : int× int (1.8)

13

Expanding the semantic interpretation of (1.8) we again have the proposition (1.5)

above, while (1.7) simply expands to the true proposition by (1.3). Locally, then, the store

instruction will not cause any problems because we are dealing with base true proposi-

tions at the location R(rt) + 1.

However, what if there is aliasing in the register file? That is, the content of rs is the

same as that of rt and somehow rs has the type:

M ` R(rs) : int× (int× int)

Now the second element of R(rs) is supposed to be a tuple pointer but we are writing

a plain integer to the second element of R(rt), where R(rt) = R(rs). In this situation, we

would no longer be able to satisfy the typing requirement of R(rs) after the store instruc-

tion is executed.

Most source level type systems eliminate this problem of aliasing by fixing a single

type for each memory location and only allowing writes of that type to the location. In

such a context, the situation above where two aliases have different types would not arise.

But how can this be achieved in the FPCC semantic model of types? We cannot specify

a type mapping directly because all types are being interpreted as predicates. The FPCC

approach was to enhance the meaning of types by adding an “allocset” mapping to defi-

nition (1.6)– something like:

dτ1 × τ2e(M)(a)(v) =def . . . ∧ a(M(v)) = dτ1e(. . .) ∧ a(M(v + 1)) = dτ2e(. . .)

dinte(M)(a)(v) =def true

(1.9)

The idea being to enforce that all predicates on memory addresses be consistent with

the mapping defined by the allocset, a. However, the definition above is not well-founded.

Examing the logical types of dτ1 × τ2e and a, we now have:

14

type = mem → allocset → val → prop

allocset = val → type

with an inconsistent cardinality in the metalogical type (note the circularity in the defini-

tion). This problem “stumped” the FPCC developers for over a year [3] until a solution

was produced by Ahmed, et al. [2], which forms the basis of Ahmed’s thesis dissertation.

The semantic modeling of types hit other similar difficulties when dealing with first-

class functions (code pointers) and recursive types. As a result, the semantic models be-

came much more complex in order to handle the additional type system features.

1.4 Dissertation Contributions and Outline

In contrast to the developments discussed above, I have worked on a “syntactic” approach

to FPCC which is the main topic of this dissertation. In my approach, I have avoided using

a logic with type system primitives as PCC, while at the same time have been immedi-

ately able to handle type system features that took years of work for the semantic FPCC

approach to model. In addition, I have developed a framework allowing the interaction

between code compiled from different type systems, or allowing the interoperation of

code a portion of which is automatically proven safe based on compilation from a high

level type-safe language, and the remaining portion of which (the “runtime library”) has

been certified manually or semi-automatically using a proof assistant. The potential, then,

is a framework where certified user programs can run on, and interact with, a similarly

certified runtime library and operating system. Though I have not yet progressed to actu-

ally programming a full-scale runtime system or operating system, this dissertation lays

a viable foundation for such an effort.

In the next chapter, I describe the machine, logic, and safety policy that will be used

in the rest of the work. Then, in Chapter 3, I introduce the syntactic approach to FPCC.

The chapter is based mostly on previously published papers by Hamid, Shao, Trifonov,

15

et al. [33, 34]. Chapter 3 presents a somewhat monolithic approach to building certified

syntactic FPCC packages and does not address the issue of interfacing with a runtime

system or other type systems. Thus, I extend the framework for that purpose in Chapter 4,

which is based on a recent paper by Hamid and Shao [32]. In Chapter 5, I demonstrate

an application of the framework for an assembly language with a region type system and

the corresponding region management runtime library. Finally, I discuss in Chapter 6 a

variety of issues that I have encountered in my work on syntactic FPCC, and conclude

with related works, a summary, and future work in Chapters 7 and 8.

Scope of the Dissertation

Before progressing onto the bulk of this thesis, I would note that the framework con-

structed so far is a prototype for an idealized machine, as will be described in more de-

tail in the next chapter. Thus, I will not be presenting here a solution to the Mars rover

problem – i.e., an operating system kernel or full-scale memory management runtime

library. As discussed in the earlier sections of this introduction, my prototype develop-

ment shows that common type system features that have not been handled adequately

or easily in previous frameworks can be supported in a straightforward manner using a

syntactic approach to proof-carrying code. This thesis is supported by other researchers’

recent and ongoing developments of more complete PCC frameworks for realistic ma-

chines (e.g. [19, 18]) based on the syntactic approach I have presented in the first half of

this dissertation. For my own research, I have not immediately concentrated on technical

details such as targeting a real machine, but have instead focused on the aspect of code

interoperation for PCC. The latter part of this dissertation deals with my extension of the

prototype framework to handle the issue of interfacing type system code with a certified

library. In Chapter 8, I discuss some further limitations and future work in the context of

my current prototype before concluding.

16

Coq implementation

All the proofs described in this paper have been formalized and mechanically proven in

the Coq proof assistant, unless otherwise noted. (In particular, proofs for the runtime

system of Chapter 5 are still in progress.) For each chapter, then, I provide a link to the

downloadable Coq code and in each section I will mention the corresponding Coq file

in the proof development. Also, the main portion of the Coq developments has been

included in the Appendices.

17

Chapter 2

A Machine and Logic for

Foundational Proof-Carrying Code

In this chapter, I present the target machine on which programs will run and the logic

that I use to reason about the safety of the code being run. Throughout the thesis I

will use an idealized machine to present my FPCC framework. A “real” machine intro-

duces many engineering details– fixed-size integers, overflow, addressing modes, mem-

ory model, variable length instructions, relative addressing, speculative execution, etc.–

which I would rather avoid while presenting my central contributions. Although some

progress has been made towards an implementation upon the IA-32 (Intel x86) architec-

ture, I leave that as future work for now. The primary issues that I have worked to solve

for this thesis– an FPCC framework that easily handles advanced type system features

such as mutable records and recursive types, and interfacing between code written at dif-

ferent levels of abstraction or type systems– are orthogonal to the technical details of a

real architecture, although there are indeed many important issues to be dealt with there.

Following the presentation of the machine in Section 2.1, I present the logical system

that I have used for reasoning about safety. The logic must be suitably expressive enough

to encode the operational semantics of machine code as well as the concept of safety. A

code producer will provide both the executable code and a proof in the foundational logic

18

Word 3 w, i, pc ::= 0 | 1 | . . .

Regt 3 r ::= r0 | r1 | . . . | r15

Cmd 3 c ::= add rd, rs, rt | addi rd, rs, i | sub rd, rs, rt | subi rd, rs, i
| mov rd, rs | movi rd, i | bgt rs, rt, w | bgti rs, i, w
| ld rd, rs(i) | st rd(i), rs | jd w | jmp r | illegal

M ∈ Mem = Word → Word

R ∈ RFile = Regt → Word

S ∈ State = Mem × RFile × Word

Figure 2.1: Machine state: memory, registers, and instructions (commands).

that the code satisfies the safety condition. In Section 2.2, I also define a safety condi-

tion that I will use throughout the first part of this thesis and discuss how proofs will be

generated.

The Coq files corresponding to this chapter may be downloaded at:

http://flint.cs.yale.edu/flint/publications/safpccjar.html

The Coq developments for this chapter and the next are also included in Appendix A.

2.1 An Idealized Machine

The idealized machine I use is defined by a machine state and a step function describing

the deterministic transition from one machine state to the next. The state consists of the

hardware components of the machine: a memory, register file, and a special register con-

taining the current program counter (pc), defined in Figure 2.1. I use a 16-register word-

addressed machine with an unbounded memory of words of unlimited size. The figure

also shows the instruction set (which I will refer to as commands to distinguish from assem-

bly language instructions presented in a later chapter). Informally, the commands have the

following effects:

19

add rd, rs, rt set register rd to the sum of the contents of rs and rt;

addi rd, rs, i set rd to the sum of the contents of rs and i;

sub rd, rs, rt set rd to the difference between the contents of rs and rt;

subi rd, rs, i set rd to the difference between the contents of rs and i;

mov rd, rs copy the contents of rs into rd;

movi rd, i move an immediate value, i, into rd;

bgt rs, rt, w branch to location w if rs > rt;

bgti rs, i, w branch to location w if rs > i;

ld rd, rs(i) load the contents of memory location rs + i into rd;

st rd(i), rs store the contents of rs into memory location rd + i;

jd w direct jump (transfer execution) to location w;

jmp r indirect jump to the address in register r;

illegal put the machine in an infinite loop.

Of course, these commands are actually encoded as words (integers) in the machine

state. I define Cmd as an inductive type because its constructors are much easier to manip-

ulate that the encoded words. Now, in order to specify the operational semantics of the

machine, I define a decoding function (Dc) and a Step function. Dc (of type Word → Cmd)

decodes integers words from memory into the appropriate structured representation of

commands shown in Figure 2.1. Non-decodable words will result in an illegal in-

struction (indicating the program counter is at a non-code address and the machine has

“crashed”).

The Step function describes the deterministic transition from one machine state to the

next, depending on the command at the current pc. Its definition is given in Figure 2.2.

The commands’ effects are as they have been informally explained above. In our ideal-

ized machine, the load and store commands have no side conditions because memory is

infinite (readable and writable limitations on areas of memory will be specified later in

20

if Dc(M(pc)) = then Step(M, R, pc) =

add rd, rs, rt (M, R{rd 7→ R(rs) + R(rt)}, pc+1)

addi rd, rs, i (M, R{rd 7→ R(rs) + i}, pc+1)

sub rd, rs, rt (M, R{rd 7→ R(rs) − R(rt)}, pc+1)

subi rd, rs, i (M, R{rd 7→ R(rs) − i}, pc+1)

mov rd, rs (M, R{rd 7→ rs}, pc+1)

movi rd, i (M, R{rd 7→ i}, pc+1)

ld rd, rs(i) (M, R{rd 7→ M(R(rs) + i)}, pc+1)

st rd(i), rs (M{R(rd) + i 7→ R(rs)}, R, pc+1)

bgt rs, rt, w
(M, R, pc+1) when R(rs) ≤ R(rt)
(M, R, w) when R(rs) > R(rt)

bgti rs, i, w
(M, R, pc+1) when R(rs) ≤ i
(M, R, w) when R(rs) > i

jd w (M, R, w)

jmp r (M, R, R(r))

illegal (M, R, pc)

Figure 2.2: Machine semantics.

my safety policy– see Chapter 5).

Coq code: tis.v formalizes Figure 2.1 and the decode and step functions of this sec-

tion.

2.2 The Logic and Safety Condition

2.2.1 The Calculus of Inductive Constructions

In order to produce FPCC packages, we need a logic in which we can express (encode)

the operational semantics of the machine defined above, as well as define the concept and

criteria of safety. A code producer must then provide a code executable (initial machine

state) along with a proof that the initial state and all future transitions therefrom satisfy

the safety condition.

The foundational logic I use is the calculus of inductive constructions (CiC) [78, 62].

CiC is an extension of the calculus of constructions (CC) [16], which is a higher-order

typed lambda calculus. CC corresponds to a variant of higher-order predicate logic via

the formulae-as-types principle (Curry-Howard correspondence [40]). The syntax of CC

21

is:

A,B ::= Set | Type | X | λX :A.B | AB | ΠX :A.B

The Coq implementation (discussed more below) adds another sort, Prop, to the calcu-

lus, along with Set. Under the proposition-as-types, proofs-as-terms paradigm, if A has sort

Prop then it represents a logical proposition. A term M that inhabits A (i.e. has type A) is

a proof of the proposition. On the other hand, terms of the sort Set are used as the types

of data types, such as the natural numbers, lists, trees, booleans, etc.

CiC, as its name implies, extends the calculus of constructions with inductive defi-

nitions [17, 64, 62]. An inductive definition can be written in a syntax similar to that of

ML datatypes. For example, the following introduces an inductive definition of natural

numbers of kind Set with two constructors of the specified types:

Inductive Nat : Set := zero : Nat | succ : Nat→Nat

Inductive definitions may be parameterized as in the following definition of polymor-

phic lists:

Inductive List [t :Set] : Set := nil : List t

| cons : t→List t→List t

The logic also provides elimination constructs for inductive definitions, which com-

bine case analysis with a fix-point operation. Objects of an inductive type can thus be

iterated over using these constructs. In order for the induction to be well-founded and

for iterators to terminate, a few constraints are imposed on the shape of inductive defini-

tions; most importantly, the defined type can only occur positively in the arguments of its

constructors. Mutually inductive types are also supported.

The calculus of inductive constructions has been shown to be strongly normalizing [88],

hence the corresponding logic is consistent. It is supported by the Coq proof assistant [78],

which I use to implement a prototype system of the results presented in this thesis.

22

In the remainder of this thesis, I will often use more familiar mathematical notation

(as in Figure 2.1) to present definitions and the statement of propositions, rather than the

strict definition of CiC syntax given in this section. For example, the application of two

terms will be written as A(B) and inductive definitions will be presented in BNF format.

I will often, however, retain the Π notation, which can generally be read as a universal

quantifier.

2.2.2 Representing Proofs and Coq Syntax

Before discussing safety proofs, I first give a taste of the Curry-Howard correspondence

between proofs and programs in action – that is, how one uses a calculus like CiC to state

propositions and represent proofs.

Let us say we wish to produce some proofs about properties of the natural numbers,

defined above (Nat). First, I define the less-than-equal predicate using an inductive defi-

nition:

Inductive le [n :Nat] : Nat→Prop := le n : lenn

| le s : Πm :Nat. lenm→ len (succm)

This definition corresponds to the pair of inference rules:

n ≤ n
(LE N) n ≤ m

n ≤ m + 1
(LE S)

Now, suppose we wish to prove the following theorem:

Theorem 2.1 (n le zero) For all natural numbers n, 0 ≤ n.

Proof By induction on n. Base case n = 0: apply the (LE N) rule. Inductive case

n = m + 1: by the inductive hypothesis, we know 0 ≤ m. Then use this with the (LE S)

23

rule to show 0 ≤ m + 1. �

In the CiC calculus, we would represent this proof as a function taking a natural num-

ber argument n and producing a proof term that 0 ≤ n. The proof term is built by recur-

sive case analysis on the argument, corresponding to the induction in our written proof

above:

zero_le_n : Πn :Nat. le 0n
:= λn :Nat. Cases n of

zero ⇒ (le_n zero)

| succm ⇒ (le_s zero m (zero_le_n m))

The recursive call corresponds to use of the inductive hypothesis.

Thus, the process of formalizing and mechanizing proofs in CiC is very similar to

writing a program, although there are constraints on what “programs” can be written. In

practice, such proofs are developed using the Coq proof assistant [79], an implementation

of the CiC calculus. Coq concrete syntax is somewhat different than the mathematical

syntax used above. Additionally, over the course of my dissertation work, the Coq tools

have undergone a major upgrade with a revised syntax. Unfortunately, therefore, some

of my proof developments for this thesis are in the older (version 7.3) syntax while I have

done the latest developments using the new (8.0) syntax.

The table below compares Coq notations to the CiC syntax presented earlier in this

section.

CiC Coq 7.3 Coq 8.0

Set Set, Prop Set1, Prop

Type Type Type

X x x

λX :A.B [x:A] B fun x:A => B

AB A B A B

ΠX :A.B (x:A) B forall x:A, B

24

The notation for inductive definitions and case analysis in Coq is essentially similar

to the example above with natural numbers and less-than-equal. Coq provides a number

of primitive tactics used to develop proofs interactively. Though powerful, however, the

level of automation is not as much as one might hope for, as I will discuss in Section 6.1.

For now, let us resume the discussion of proofs and safety in the FPCC framework.

2.2.3 Defining Safety

The safety condition is a predicate expressing the fact that code will not “go wrong.” I say

that a machine state S is safe if every state it can ever reach satisfies the safety policy SP:

Safe (S,SP) = Πn :Nat.SP (Stepn (S))

A typical safety policy may require such things as the program counter must point to

a valid instruction address in the code area and that any writes (reads) to (from) memory

must be from a properly accessible area of the data space. For the next chapter of this

thesis, I will be using a very simple safety policy, requiring only that the machine is never

at an invalid instruction:

BasicSP (M, R, pc) = (Dc (M(pc)) 6= illegal)

We can easily define access controls on memory reads and writes by including an-

other predicate in the safety policy, SafeRdWr(M, R, pc) – I will do this in Chapter 5. By

reasoning over the number of steps of computation more complex safety policies includ-

ing temporal constraints can potentially be expressed. However, I will not be dealing with

such policies here.2

The FPCC code producer has to provide an encoding of the initial state S0 along with

a proof A that this state satisfies the safety condition BasicSP, specified by the code con-
1Predicative universe.
2Yu [99] has recently shown some results in this.

25

sumer. The final FPCC package is thus a pair:

F = (S0 : State, A : Safe (S0,BasicSP)).

2.2.4 Generating Proofs

In the first iteration, the actual proof of safety is organized following the approach used

by Appel et al. [4, 5]. I construct an induction hypothesis Inv, also known as the global

invariant, which holds for all states reachable from the initial state and is strong enough

to imply safety. Then, to show that the initial state S0 is safe, I provide proofs for the

propositions:

FPCC Initial Condition: Inv (S0)

FPCC Preservation: ΠS :State. Inv (S)→ Inv (Step (S))

FPCC Progress: ΠS :State. Inv (S)→SP (S)

These propositions intuitively state that the invariant holds for the initial state, and for

every subsequent state during the execution. FPCC Progress establishes that whenever

the invariant holds, the safety policy of the machine is also satisfied. Together, these imply

that during the execution of the program the safety policy will never be violated. To prove

the initial state is safe, first I use the Initial Condition and Preservation, and show by

induction that

Πn :Nat. Inv (Stepn (S0)).

Then Safe (S0) follows directly by Progress.

Unlike Appel et al., who construct the invariant by means of a semantic model of types

at the machine level, my approach is based on the use of type soundness [93]: I define

Inv (S) to mean that S is “well-formed” syntactically. The well-formedness property must

be preserved by the step function, and must imply safety; the proofs of these properties

are encoded in the FPCC logic as proof terms for Preservation and Progress.

26

In the following chapter I show how to derive the notion of well-formedness for a

machine state by relating the state to a type-correct program in a typed assembly language.

The type system of the language defines a set of inference rules for judgments of the form

` P , meaning that the program P is well-formed (type-correct). The dynamic semantics

of the language specifies an evaluation relation 7−→ on programs; I use here the term

“program” to denote not only code but a more general configuration fully representing

a stage of the evaluation. The syntactic approach to proving soundness of a type system

involves proving progress3 (if ` P , then P is not stuck, i.e. there exists P ′ such that P 7−→

P ′) and preservation (if ` P and P 7−→ P ′, then ` P ′).

The central idea of my approach to FPCC is to find a typed assembly language and

a translation relation ⇒ between its programs and machine states, such that type-correct

programs are mapped to well-formed states, and the evaluation relation is related to the

machine step function – that is, if P ⇒ S andP 7−→ P ′, thenP ′ ⇒ Step (S). If these proper-

ties hold, I can define the invariant Inv (S) as simply stating that there exists a type-correct

program P such that P ⇒ S. Then the proofs of progress and preservation for the type

system (completely formalized in the FPCC logic) can be used to construct straightfor-

ward proofs of the corresponding propositions needed for the safety proof for S0. Further

details of the construction of proof terms are provided in Section 3.2.3.

The method of generating FPCC proofs above appears somewhat monolithic in its use

of the global invariant as I have described above. It imposes requirements on the design of

the typed assembly language other than just having a sound type system. If the assembly

language has “macro” instructions (e.g. malloc [52, 51] and newarray [95], which “ex-

pand” into sequences of several machine instructions), the well-formedness of the assem-

bly program alone will be insufficient for the construction of the global invariant. This is

because Inv must hold for all machine states reachable from S0. For the intermediate states

of the execution of a macro instruction there are no corresponding well-formed assembly
3This refers to progress in the source type system, not the FPCC Progress proposition defined earlier in

this section.

27

programs. Hence, each one of the assembly instructions must correspond to exactly one

machine instruction. Note, however, that this exact correspondence of instructions is not

necessary in general for the syntactic approach to work, although it facilitates the defini-

tion of the invariant and allows for a simpler presentation.

In fact, in Chapter 4, I will refine the approach described above by inserting a generic

layer of reasoning above the machine code which can (1) be a target for the compilation of

typed assembly languages, (2) certify low-level runtime system components using asser-

tions as in Hoare logic, and (3) “glue” together these pieces by reasoning about the com-

patibility of the interfaces specified by the various types of source code. In this context,

the global invariant is broken down into a disjunction of local invariants on each indi-

vidual machine instruction. The local invariants still use the syntactic FPCC approach to

relate machine instructions to the typed assembly language source code, but by breaking

apart the global invariant, I can easily handle macro instructions and interactions between

different type systems.

28

Chapter 3

A Syntactic Approach to

Foundational Proof-Carrying Code

An overview of the syntactic approach to FPCC has been given in the previous chapter.

In this chapter, I define a sample source language and type system, including its static

and dynamic semantics and proof of soundness. Then I show how to compile programs

from this language to the machine defined in Chapter 2, producing the required FPCC

proofs in the process. I also give an overview of the Coq implementation (Appendix A),

the complete files of which are available for download at:

http://flint.cs.yale.edu/flint/publications/safpccjar.html

3.1 Featherweight Typed Assembly Language

The source language that I will be compiling to FPCC is a version of the typed assembly

language (TAL) by Morrisett et al. [52]. The approach developed in this thesis can be

applied to a TAL-like language extended with higher-order kinds and recursive types. For

simplicity, I only introduce here a subset of such a language, called Featherweight Typed

Assembly Language (FTAL). It does not include polymorphism or existential types, which

can be easily added but would complicate the presentation (Chapter 5 presents another

29

(type) τ ::= α | int | ∀[Γ] | 〈τ
1

ϕ
1 , . . . , τ

n

ϕ
n 〉 | µα.τ

(init flag) ϕ ::= 0 | 1

(heap ty) Ψ ::= {0 :τ
0
, . . . , n :τ

n
}

(alloc pt ty) ρ ::= fresh | used(n)

(regfile ty) Γ ::= {r0 :τ
0
, . . . , rn :τ

n
, r15:ρ}

(label) l ::= 0 | 1 | . . .

(user reg) r ::= r0 | r1 | . . . | r14

(all reg) r̂ ::= r | r15

(word val) v ::= l | i | ?τ | fold v as τ

(heap val) h ::= 〈v1, . . . , vn〉 | code [Γ].I

(heap) H ::= {0 7→ h0, . . . , n 7→ hn}

(regfile) R ::= {r0 7→ v0, . . . , r15 7→ v15}

(instr) ι ::= add rd, rs, rt | addi rd, rs, i | alloc rd[~τ] | bgt rs, rt, l

| bump i | fold rd[τ], rs | ld rd, rs(i) | mov rd, rs

| movi rd, i | movl rd, l | st rd(i), rs | unfold rd, rs

(instr seq) I ::= ι; I | jd l | jmp r

(program) P ::= (H, R, I)

Figure 3.1: Syntax of FTAL.

TAL with these features). However, it does support first-class code pointers, recursive

types, memory allocation, and mutable records (tuples).

The syntactic approach to FPCC as presented here requires that for each machine state

and each state transition, there be a corresponding FTAL program and transition. For

most FTAL instructions it is easy to see there is a one-to-one mapping to the machine

instructions of Section 2.1. However, having a malloc “macro instruction” in FTAL (as

in TAL) will not work because it cannot be mapped to a single machine instruction and

will not satisfy our requirements for generating FPCC proofs, since there would be no

corresponding FTAL state between the expanded machine instructions. (See Section 3.1.6

for details on this issue.) My approach here is to make the memory allocation model

explicit and split the malloc instruction into, in this case, two individual instructions.

30

3.1.1 Syntax

The syntax of FTAL is presented in Figure 3.1. As in TAL, the abstract machine state

(which I will call a program to distinguish from the machine state of Section 2.1) consists

of a heap H, a register file R, and a sequence of instructions I . The heap maps labels l

to heap values h, and the register file maps registers r̂ to word values v. I use {} for an

empty heap. The notation H{l 7→ h} represents a heap which extends H with a label l

mapped to h. Similar notation is used for heap types, register files, and register file types

(except that for the latter two, I also use the same notation to indicate an update to the

mapping). When extending the heap, the type system will implicitly enforce a constraint

that the labels in the heap be in consecutive ascending order starting at 0. In the register

file type (Γ), r15 is a special allocation pointer register and of the remaining user registers,

not all of them need appear in the type. The notation |H| and |Ψ| is used to represent the

number of labels in the heap and heap type, respectively. Notice, that this number will

also correspond to the next unused label in the heap or heap type.

Only tuples and code blocks are stored in the heap and thus these are the heap values.

Word values include labels (pointers to heap values), integers, recursive data, and junk

values (?τ), which are used by the operational semantics to represent uninitialized tuple

elements annotated with a type. The distinction between word values and small values in

TAL is eliminated in FTAL by specializing the instruction set. Thus, for example, there are

now two instructions for addition, one (add) taking a register and the other (addi) using

an immediate value as the third operand.

The memory model is a simple linear unbounded heap with an allocation pointer

pointing to the heap top, initially set to the bottom of the heap space. Memory alloca-

tion consists of copying the current allocation pointer to a register using alloc and then

adjusting the allocation pointer with bump. In Section 3.2.1 we will see how these two in-

structions can be directly translated into one FPCC machine instruction each. One of the

general registers, r15, is reserved as the allocation pointer register, tracking the amount

31

of allocated memory. FTAL instructions will only explicitly refer to the first 15 “user”

registers (r).

After an alloc instruction, a corresponding bump must be executed, to adjust the alloca-

tion pointer, before alloc can be used again. To statically enforce this, I give the allocation

pointer register a special allocation status type, ρ, rather than a normal type. The possible

types for this register, fresh and used(i), reflect the two states of allocation. Keeping track

of the allocation status allows other instructions to be interleaved between an alloc and

bump pair.

To meaningfully implement linear allocation, we need an ordering on memory labels,

so I have defined labels as natural numbers. To determine whether a label has been allo-

cated in the heap, it is compared with the heap size, |H|.

The types of FTAL are integers, code, tuple types annotated with initialization flags

(ϕ), and recursive types. The initialization flags indicate whether there is valid data at

each position of the tuple (when a tuple is first allocated, all the flags are 0). Other than

fold and unfold, the remaining instructions (add, addi, bgt, mov, movi, movl, ld, and st) are

equivalent or similar to those in the original TAL. A code block is a sequence of instruc-

tions, annotated with a register file type (essentially specifying the preconditions on the

data expected in the registers when the code block begins executing). Code blocks always

end with a jmp or jd instruction, though they may also be exited in the middle by bgt.

Operations on recursive types in FTAL are supported by the fold and unfold instruc-

tions. Dynamically, these are no different than a simple mov. Statically, however, their

purpose is to “cast” the type of a word, by either “rolling up” or “unrolling” the recursive

type. (See the relevant rules of the static semantics in Section 3.1.3.)

3.1.2 Dynamic Semantics

The operational semantics of FTAL is presented in Figure 3.2. Most of the instructions

have an intuitively clear meaning. The ld and st instructions load from and store to a

32

(H, R, I) 7−→ P where
if I = then P =

add rd, rs, rt; I
′ (H, R{rd 7→ R(rs) + R(rt)}, I

′)
addi rd, rs, i; I

′ (H, R{rd 7→ R(rs) + i}, I ′)
alloc rd[~τ]; I

′ (H ′, R{rd 7→ l}, I ′)
where~τ = τ

1
, . . . , τ

n
, R(r15) = l,

and H ′ = H{l 7→ 〈?τ1, . . . , ?τn〉}
bgt rs, rt, l; I

′ (H, R, I ′) when R(rs) ≤ R(rt); and
(H, R, I ′′) when R(rs) > R(rt)
where H(l) = code [Γ].I ′′

bump i; I ′ (H, R{r15 7→ |H|}, I ′)
fold rd[rs], τ; I

′ (H, R{rd 7→ foldR(rs) as τ}, I ′)
jd l (H, R, I ′) where H(l) = code [Γ].I ′

jmp r (H, R, I ′) where H(R(r)) = code [Γ].I ′

ld rd, rs(i); I
′ (H, R{rd 7→ vi}, I

′) where 0 ≤ i < n
H(R(rs)) = 〈v0, . . . , vn−1〉

mov rd, rs; I
′ (H, R{rd 7→ R(rs)}, I

′)
movi rd, i; I

′ (H, R{rd 7→ i}, I ′)
movl rd, l; I

′ (H, R{rd 7→ l}, I ′)
st rd(i), rs; I

′ (H{l 7→ h}, R, I ′) where 0 ≤ i < n
R(rd) = l, H(l) = 〈v0, . . . , vn−1〉, and
h=〈v0, . . . , vi−1, R(rs), vi+1, . . . , vn−1〉

unfold rd, rs; I
′ (H, R{rd 7→ v}, I ′)

where R(rs) = fold v as τ

Figure 3.2: Operational semantics of FTAL.

tuple in the heap using the specified index. The instruction bgt rs, rt, l tests whether the

value in rs is larger than that in rt, and, if so, transfers control to the code block at l.

In order to allocate a tuple in the heap, first the alloc instruction is used to copy the

current heap allocation pointer to rd and allocate the desired size in the heap. Before the

next allocation, the allocation pointer needs to be adjusted. This is achieved using the

bump instruction, which sets the allocation pointer to the next unused region of the heap,

as described earlier. (The i argument is not used by the operational semantics.) Since

we assume a linear allocation method, unused regions of the heap are simply all those

beyond the currently allocated data.

The fold instruction annotates the value of rs with the recursive type and moves it into

rd, while unfold extracts the value from the recursive package in rs into rd. Note that the

33

Judgment Meaning
` τ τ is a well-formed type
` Ψ Ψ is a well-formed heap type
` Γ Γ is a well-formed regfile type
` τ

1
≤ τ

2
τ
1

is a subtype of τ
2

` Γ1 ⊆ Γ2 Γ1 is a regfile subtype of Γ2

` P P is a well-formed program
`H :Ψ H is a well-formed heap of type Ψ
Ψ ` R :Γ R is a well-formed regfile of type Γ
Ψ ` l :ρ l is a label of allocation status ρ
Ψ `h :τ hval h is a well-formed heap value of type τ
Ψ ` v :τ v is a well-formed word value of type τ
Ψ ` v :τϕ v is a well-formed word value of type τϕ

Ψ; Γ `I I is a well-formed instruction sequence

Figure 3.3: Static judgments of FTAL.

fold and unfold instructions of FTAL (as well as TAL) are not no-ops but copy a value from

one register to another.

3.1.3 Static Semantics

The primary judgment of the static semantics is that of the well-formedness of a program.

That in turn depends on judgments of the well-formedness of the heap, heap type, reg-

ister file, register file type, and instruction sequence. The various typing judgments are

summarized in Figure 3.3. The complete rules of the FTAL static semantics are given in

Figures 3.4 to 3.6.

The top-level well-formedness rules are shown in Figure 3.4. To have a well-formed

program, the heap and register file must be well-formed in some appropriate environ-

ments, as must be the current instruction sequence. Additionally, the current instruction

sequence must be present in the heap. The notation I ⊆tail I ′ means that I is a suffix of

I ′. For a heap to be well-formed the domain of the heap type must be the same as that of

the heap and each heap value must be well-formed. However, the type of a well-formed

register file need only specify a subset of the registers in its domain. The premise on the

second line of the (REG) rule is not needed for FTAL type soundness but it is necessary to

34

` P `H :Ψ Ψ ` R :Γ

`H :Ψ Ψ ` R :Γ Ψ; Γ `I
∃l ∈ Dom(H).H(l)=code [Γ′].I ′ and I ⊆tail I ′

` (H, R, I)
(PROG)

` Ψ |Ψ|= |H| Ψ `H(l) :Ψ(l) hval (0≤ l< |H|)

`H :Ψ
(HEAP)

Ψ ` R(ri) :τ
i

(0≤ i≤n) Ψ ` R(r15) :ρ
∀r ∈ Dom(R)−{r15}.if R(r) = l then l < |Ψ|

Ψ ` R :{r0 :τ
0
, . . . , rn :τ

n
, r15:ρ}

(REG)

Figure 3.4: Well-formedness of FTAL programs, heaps, and register files.

enforce some invariants during the translation to FPCC, as will be discussed later.

Subtyping is used for two purposes: one to allow a code block to be called when the

current register file type is more detailed than needed, and the other to be able to type-

check the initialization of an uninitialized tuple element as described below.

To type-check heap allocation and the load and store operations, we follow TAL by

introducing initialization flags in the type of tuples. When a tuple is newly allocated on

the heap, all the elements are flagged with 0. A store operation will set the flag of the

appropriate element to 1. Thus, a load operation is only well-formed if the flagged type of

the element being accessed is set to 1. Because the type system only approximately tracks

the initialization of tuple elements, we use subtyping to allow initialized tuple elements

to be treated as if they were not initialized – see rules (0-1) and (LABEL) in Figure 3.5.

In this way, if a tuple is updated through one register, aliased pointers (labels) in other

registers or in the heap will still be well-typed (although they may be treated as still being

uninitialized).

35

` τ ` Ψ ` Γ ` τ
1
≤ τ

2
` Γ1 ⊆ Γ2

FTV(τ) = ∅

` τ
(TYPE)

` τ
i

(1≤ i≤n)

` {l0 :τ
0
, . . . , ln :τ

n
}

(HTYPE)

` τ
i

(0≤ i≤n)

` {r0 7→ v0, . . . , rn 7→ vn}
(RFTYPE)

` τ

` τ ≤ τ
(REFLEX)

` τ
1
≤ τ

2
` τ

2
≤ τ

3

` τ
1
≤ τ

3

(TRANS)

` τ
i

(1≤ i≤n)

` 〈τ
1

ϕ
1 , . . . , τ

i−1

ϕ
i−1 , τ

1

i, τ
i+1

ϕ
i+1 , . . . , τ

n

ϕn 〉 ≤ 〈τ
1

ϕ
1 , . . . , τ

i−1

ϕ
i−1 , τ

0

i, τ
i+1

ϕ
i+1 , . . . , τ

n

ϕn 〉
(0-1)

` τ
i

(0≤ i≤m) (m≥n)

` {r0 7→ v0, . . . , rm 7→ vm} ⊆ {r0 7→ v0, . . . , rn 7→ vn}
(WEAKEN)

Ψ `h :τ hval Ψ ` v :τ Ψ ` l :ρ Ψ ` v :τϕ

Ψ ` vi :τi

ϕ
i (1≤ i≤n)

Ψ `〈v1, . . . , vn〉 :〈τ1
ϕ
1 , . . . , τ

n

ϕ
n 〉 hval

(TUPLE)
` Γ Ψ; Γ `I

Ψ `code [Γ].I :∀[Γ] hval
(CODE)

Ψ ` i : int
(INT) Ψ ` v :τ[µα.τ/α]

Ψ ` fold v asµα.τ :µα.τ
(FOLD)

` Ψ(l) ≤ τ

Ψ ` l :τ
(LABEL)

l= |Ψ|

Ψ ` l : fresh
(FRESH)

l= |Ψ|−1 Ψ ` l :〈τ
1

ϕ
1 , . . . , τ

n

ϕ
n 〉

Ψ ` l :used(n)
(USED)

Ψ ` v :τ

Ψ ` v :τϕ (INIT)
` τ

Ψ ` ?τ :τ0
(UNINIT)

Figure 3.5: Well-formedness of FTAL types, heap and word values.

36

Ψ; Γ `I

Γ(rs)= int Γ(rt)= int Ψ; Γ{rd : int} `I

Ψ; Γ `add rd, rs, rt; I
(ADD)

Γ(rs)= int Ψ; Γ{rd : int} `I

Ψ; Γ `addi rd, rs, i; I
(ADDI)

` τ
i

Ψ; Γ{rd : 〈τ
1

0, . . . , τ
n

0〉}{r15 : used(n)} `I

Ψ; Γ{r15 : fresh} `alloc rd[τ1 , . . . , τn
]; I

(ALLOC)

Ψ; Γ{r15 : fresh} `I

Ψ; Γ{r15 : used(n)} `bump n; I
(BUMP)

Γ(rs)= int Γ(rt)= int Ψ(l)=∀[Γ′] ` Γ ⊆ Γ′ Ψ; Γ `I

Ψ; Γ `bgt rs, rt, l; I
(BGT)

Ψ; Γ{rd : Γ(rs)} `I

Ψ; Γ `mov rd, rs; I
(MOV)

Ψ; Γ{rd : int} `I

Ψ; Γ `movi rd, i; I
(MOVI)

Ψ; Γ{rd : τ} `I ` Ψ(l) ≤ τ

Ψ; Γ `movl rd, l; I
(MOVL)

Γ(rs) = 〈τ
0

ϕ
0 , . . . , τ

i−1

ϕ
i−1 , τ

1

i, τ
i+1

ϕ
i+1 , . . . , τ

n−1

ϕ
n−1 〉

Ψ; Γ{rd : τ
i
} `I (0 ≤ i < n)

Ψ; Γ ` ld rd, rs(i); I
(LD)

Γ(rs)=τ
i

Γ(rd)=〈τ
0

ϕ
0 , . . . , τ

n−1

ϕ
n−1 〉

Ψ; Γ{rd : 〈τ
0

ϕ
0 , . . . , τ

i−1

ϕ
i−1 , τ

1

i, τ
i+1

ϕ
i+1 , . . . , τ

n−1

ϕ
n−1 〉} `I (0≤ i<n)

Ψ; Γ ` st rd(i), rs; I
(ST)

Γ(rs) = τ[µα.τ/α] Ψ; Γ{rd : µα.τ} `I

Ψ; Γ ` fold rd[rs], µα.τ; I
(FOLD-I)

Γ(rs) = µα.τ Ψ; Γ{rd : τ[µα.τ/α]} `I

Ψ; Γ `unfold rd, rs; I
(UNFOLD)

Ψ(l)=∀[Γ′] ` Γ ⊆ Γ′

Ψ; Γ ` jd l
(JD)

Γ(r)=∀[Γ′] ` Γ ⊆ Γ′

Ψ; Γ ` jmp r
(JMP)

Figure 3.6: Well-formedness of FTAL instruction sequences.

37

The special allocation register is typed using a new judgment of allocation status:

l= |Ψ|

Ψ ` l : fresh
(FRESH)

l= |Ψ|−1 Ψ ` l :〈τ
1

ϕ
1 , . . . , τ

n

ϕn 〉

Ψ ` l :used(n)
(USED)

In the first typing rule, a label whose value is equivalent to the size of the heap type

must necessarily be unallocated, i.e. fresh. When allocation takes place, then the allocation

register temporarily points to the newly allocated memory, and thus will have allocation

status used(n) where n is the length of the allocated tuple. The assignment of allocation

status interacts with the two novel FTAL instructions, alloc and bump, as shown in their

typing rules:

` τ
i

Ψ;Γ{rd : 〈τ
1

0, . . . , τ
n

0〉}{r15 : used(n)} `I

Ψ;Γ{r15 : fresh} `alloc rd[τ1 , . . . , τn
]; I

(ALLOC)

Ψ;Γ{r15 : fresh} `I

Ψ;Γ{r15 : used(n)} `bump n; I
(BUMP)

For an alloc instruction to be well-typed, the allocation register, r15, must be in the

fresh status, since otherwise, as can be seen from the operational semantics, the previ-

ously allocated data will be overwritten. After the alloc instruction, the remainder of the

instruction sequence is checked with the status of r15 changed to used(n). No further al-

location can take place until a bump instruction is encountered, which resets the status to

fresh, corresponding again to the update in the operational semantics.

Coq code: ftal.v contains the encoding of FTAL syntax and semantics.

3.1.4 Examples

In this section, I give a couple of examples of FTAL programs to demonstrate that such a

language (eventually extended with polymorphism and existentials, of course) provides

38

features which make it suitable for compiling high-level languages such as Java, ML, or

Safe C.

The first example is the calculation of a Fibonacci number in Figure 3.7. The C-like

program at the top of the figure can be compiled to the FTAL code below it. The code

segments fib, fib_loop, and fib_return form a function, written in continuation pass-

ing style (CPS), which calculates the Fibonacci number with index given in r1, and then

passes control to the continuation function given in r14. The main block calls fib to cal-

culate F10 and passes the address of the halt block as its continuation. fib initializes

the loop variables and then jumps into the loop code segment fib_loop, which jumps to

fib_return when the calculation is done. As the body of main appears twice in the figure

(once in the initial program state), it has been factored out as I to save space.

The second example, in Figure 3.8, demonstrates how to use recursive types and mem-

ory allocation to handle classes and objects. Class c has no data fields and only one

method f, which takes an object of class c and invokes its method f. In the main pro-

gram, an object of class c is created and its method f is called with the object itself as

argument. The program will end up in an infinite recursive call to c.f. In FTAL, an object

of class c is represented as a recursive tuple type whose only element is a code block with

an only argument of the object type c. The code block at label c_f uses the unfold and

ld instructions to extract the argument object’s own method f, and then jumps to it. The

constructor for c, inlined in the main code block, uses the alloc and bump instructions to

allocate heap space for a tuple, then initializes its method f with the label c_f, and folds

the tuple into an object using the fold instruction. Similarly to c_f, the main code block

then extracts method f from the newly created object and jumps to it.

3.1.5 Soundness

In order to produce the necessary FPCC proofs as described in Section 2.2.4, we must

encode the complete semantics of FTAL in CiC along with its proof of soundness, which

39

int fib (n:int) { // "Safe C" code

int a=1, b=1;

for (int i=2; i++; i<=n)

{ int c = a + b; a = b; b = c; }

return a;

}

int main () {

return fib(10);

}

P = (H, {}, I) // FTAL code

H = fib: code[{ r1:int, r14:∀[{r1:int}] }].

mov r3, r1;

movi r1, 1;

movi r2, 1;

movi r4, 2;

jd fib_loop

fib_loop: code[{ r1:int, r2:int, r3:int, r4:int,

r14:∀[{r1:int}] }].

bgt r4, r3, fib_return;

add r5, r1, r2;

mov r1, r2;

mov r2, r5;

addi r4, r4, 1;

jd fib_loop

fib_return: code[{ r1:int, r14:∀[{r1:int}] }].

jmp r14

halt: code[{r1:int}].

jd halt

main: code[{}].

I

I = movi r1, 10;

movl r14, halt;

jd fib

Figure 3.7: FTAL Example: Fibonacci Numbers

40

class c { // "Safe C++" code

void f (c x) { x.f(x); }

}

void main () {

c x = new c;

x.f(x);

}

P = (H, {}, I) // FTAL code

c = µα.<∀[{r1:α}]>
H = c_f: code[{r1:c}].

unfold r2, r1;

ld r2, r2(0);

jmp r2

main: code[{}].

I

I = alloc r1 [∀[{r1:c}]];
bump 1;

movl r2, c_f;

st r1(0), r2;

fold r1[c], r1;

unfold r2, r1;

ld r2, r2(0);

jmp r2

Figure 3.8: FTAL Example: Mini-Object

41

will be used in defining and proving the FPCC propositions. The critical theorems for the

soundness of FTAL are the usual progress and preservation lemmas:

Theorem 3.1 (FTAL Progress)

If ` P , then there exists P ′ such that P 7−→ P ′.

Theorem 3.2 (FTAL Preservation)

If ` P and P 7−→ P ′, then ` P ′.

As usual, several intermediate lemmas are used to prove these two theorems, all of

which can be formally encoded and proved in the Coq proof assistant. The most impor-

tant of these lemmas are given below. Their encoding in Coq is described in Section 3.3.

As the proofs of these lemmas and the two theorems above are extremely similar to those

of the original TAL [52], I omit any discussion of them here. In this regard, my main

contribution has been to mechanize proofs that had previously only been done on paper.

Lemma 3.3 (FTAL Register File Update)

1. If Ψ ` R :Γ and Ψ ` v :τ then Ψ ` R{r 7→ v} :Γ{r : τ}.

2. If Ψ ` R :Γ and Ψ ` l :ρ then Ψ ` R{r15 7→ l} :Γ{r15 : ρ}.

Lemma 3.4 (FTAL Canonical Word Forms) If `H :Ψ and Ψ ` v :τ then:

1. if τ= int then v= i;

2. if τ=∀[Γ] then v= l and H(l)=code [Γ].I ;

3. if τ=〈τ
1

ϕ
1 , . . . , τ

n

ϕ
n 〉 then v= l;

4. if τ=µα.τ ′ then v= fold v′ as τ.

Lemma 3.5 (FTAL Canonical Register Word Forms) If Ψ ` R :Γ and Γ(r)=τ then:

1. R(r)=v;

2. if τ= int then R(r)= i;

42

3. if τ=〈τ
1

ϕ
1 , . . . , τ

n

ϕ
n 〉 then R(r)= l.

Lemma 3.6 (FTAL Canonical Heap Forms) If Ψ `h :τ hval then:

1. if τ=∀[Γ] then h=code [Γ].I and Ψ;Γ `I ;

2. if τ=〈τ
1

ϕ
1 , . . . , τ

n

ϕn 〉 then h=〈v1, . . . , vn〉 and Ψ ` vi :τi

ϕ
i

Lemma 3.7 (FTAL Register File Weakening) If ` Γ1 ⊆ Γ2 and Ψ ` R :Γ1 then Ψ ` R :Γ2.

Lemma 3.8 (FTAL Heap Extension) If `H :Ψ, l = |H| (thus, l 6∈ Dom(H)), and ` τ,

then:

1. ` Ψ{l : τ};

2. if Ψ ` v :τ ′ then Ψ{l : τ} ` v :τ ′;

3. if Ψ ` v :τϕ then Ψ{l : τ} ` v :τϕ;

4. if Ψ;Γ `I then Ψ{l : τ}; Γ `I ;

5. if Ψ ` R :Γ{r15 : fresh} then Ψ{l : τ} ` R :Γ{r15 : used(n)};

6. if Ψ `h :τ ′ hval then Ψ{l : τ} `h :τ ′ hval;

7. if Ψ{l : τ} `h :τ hval then `H{l 7→ h} :Ψ{l : τ}.

Lemma 3.9 (FTAL Heap Update) If `H :Ψ and ` τ ≤ Ψ(l) then:

1. ` Ψ{l : τ};

2. if Ψ ` v :τ ′ then Ψ{l : τ} ` v :τ ′;

3. if Ψ ` v :τϕ then Ψ{l : τ} ` v :τϕ;

4. if Ψ;Γ `I then Ψ{l : τ}; Γ `I ;

5. if Ψ ` R :Γ then Ψ{l : τ} ` R :Γ;

6. if Ψ `h :τ ′ hval then Ψ{l : τ} `h :τ ′ hval;

7. if Ψ{l : τ} `h :τ hval then `H{l 7→ h} :Ψ{l : τ}.

43

Now that we have an assembly language with a sound type system, we are ready to

generate proof-carrying code from a well-typed FTAL program.

Coq code: lemmas_ftal.v contains these lemmas and their complete proofs.

3.1.6 Designing TAL for FPCC

I have designed a novel FTAL language for the presentation in this thesis which corre-

sponds closely to the underlying machine defined in Section 2.1. As will become clear in

the next section, every well-formed FTAL state can be mapped to a safe machine state,

and this property is used to produce a safety proof for the machine state.

For safety policies which need to enforce complex constraints on every machine state

or step, such a one-to-one mapping can be very convenient. In general, however, this

strict correspondence is not necessary for the syntactic approach to work. For example, if

we wished to retain “macro” instructions in the FTAL language, our definition of FPCC

Preservation might be modified to

ΠS :State. Inv (S)→∃n :Nat. Inv (Step(n+1) (S))

stating that starting from a state satisfying the global invariant, the machine will eventu-

ally (after one or more steps) reach another state satisfying the invariant. Better yet, I will

show in Chapter 4 a more general way to handle macro instructions, and even those which

do not have any runtime effect. When introducing polymorphism or existentials into the

FTAL language, there will be certain FTAL operations (e.g. type application) which do not

correspond to any run-time machine instructions at all. In this case, the FTAL operation

would correspond to a “cast” in the FPCC proof for the machine state.

Another reason why naı̈vely using existing typed assembly languages will not neces-

sarily help in producing FPCC is that the type system must be designed to enforce appro-

priate invariants. There are requirements in the typing rules of FTAL which are not critical

for FTAL soundness but are necessary when translating FTAL to FPCC as described in the

44

next section. An example of this is the requirement in the (REG) rule (Figure 3.4) that all

labels in registers be within the domain of the heap (including those registers that are

not specified in the type of the register file and hence not accessible by well-formed code

anyway). This condition is crucial in proving the properties discussed in Section 3.2.3.

3.2 Translating FTAL to FPCC

As outlined in Section 2.2.3, an FPCC package provides an initial state, S0, and a proof that

the state satisfies the safety policy. In the next few subsections, I show how to translate

an FTAL program into a machine state and how to use the FTAL type system to generate

proofs of the FPCC Preservation and Progress propositions, which imply safety.

3.2.1 From FTAL to Machine State

FTAL programs are compiled to machine code by (1) defining a layout for the memory

which maps heap values of the program to memory addresses, (2) translating FTAL in-

structions to machine instructions, and (3) choosing the appropriate program counter and

register values. The layout must ensure that there are no overlaps between the images of

tuples and code sequences in the memory. Our choice of the FTAL instruction set allows

us to translate every FTAL instruction into one machine instruction word.

I will express the correspondence between an FTAL program and a machine state by

a family of translation relations upon the various syntactic categories. The forms of these

relations are:

45

Relation Correspondence

(H,R, I) ⇒ (M, R, pc) FTAL program to machine state

L ` H ⇒ M FTAL heap to memory

L ` R ⇒ R register files

L ` I ⇒s Mi..j sequence of instructions to

memory layout

L ` c ⇒
i
w instruction translation

L ` h ⇒
h

Mi..j heap value to memory layout

L ` v ⇒w w word value to machine word

Recall that the machine memory is modeled as a function, Word → Word, so M(w)

denotes the memory word at address w. The judgments L ` I ⇒s Mi..j and L ` h ⇒
h

Mi..j

state that a sequence of instructions and a heap value (either a tuple or a code block),

respectively, translate to a series of consecutive words in memory M from address i to

address j.

An important step in the translation is flattening the FTAL heap into the machine

memory. To achieve this, I define a Layout function of type Heap → Label → Word which,

given an FTAL heap, returns a mapping from labels to memory addresses. (In the relations

above, L is this Layout function applied to the heap.) For our current purpose, we define

Layout ({}) (l′) =0

Layout (H{l 7→ h}) (l′) =











w + size (h), if l < l′

w, otherwise,

where w = Layout (H) (l′)

where size (h) is the size of the heap value h (n for an n-tuple, and the length of the instruc-

tion sequence for a code block). This Layout function maps labels to addresses starting at

0 and forces the translation ⇒ to lay out FTAL heap values compactly, consecutively, and

with no overlapping (due to the implicit type system constraint that the labels in a well-

46

formed heap appear in descending order). Additionally, the first unused label (whose

value equals the size of the heap) is mapped to the first unused address. These properties

of the Layout function are useful later on in proving FPCC Preservation and Progress.

The translation relations are defined by a set of inference rules, given in Figure 3.9.

The rules are straightforward and operate purely on the syntax of FTAL programs. Note

that FTAL type annotations are discarded in the translation (for example, in the fold in-

struction), and label word values are mapped to memory words using the layout function.

Each FTAL heap value corresponds to a sequence of words in memory. A heap translates

to a memory if every heap value in the heap translates to the appropriate sequence of

memory words. Registers translate directly between FTAL and the machine (r̂ is defined

in Figure 3.1 and r in Figure 2.1). An FTAL program corresponds to a machine state if

the translation relation holds on the heap and register file, and if the current instruction

sequence is at some location in the memory. Since in a well-typed FTAL program the cur-

rent instruction sequence must also be present in the heap, we can always translate it to

a known program counter. Notice that the FTAL alloc and bump instructions correspond

to machine move and addition instructions, respectively, using the register reserved for

allocation, r15. (It is for this purpose that bump has an i argument.)

The translation relation as presented in Figure 3.9 is not deterministic with respect to

the unused and uninitialized parts of the memory and to the positioning of the program

counter. However, it is straightforward on the basis of its definition to develop a deter-

ministic function (i.e. a compiler) which translates an FTAL program into a machine state

for which the translation relation described above holds. In the next section, I will show

how this initial translation is used to provide the Initial Condition FPCC proof.

3.2.2 The Global Invariant

As discussed in Section 2.2.4, in addition to translating the FTAL program to an initial

machine state S0, we must define the invariant Inv, which holds during the execution of a

47

WORD VALUES

L ` l ⇒w L(l) L ` i ⇒w i

for any w

L ` ?τ ⇒w w

L ` v ⇒w w

L ` fold v as τ ⇒w w

INSTRUCTIONS

L ` add rd, rs, rt ⇒i
add rd, rs, rt

L ` addi rd, rs, i ⇒i
addi rd, rs, i

L ` alloc rd[~τ] ⇒
i
addi rd, r15, 0

L ` bump i ⇒
i
addi r15, r15, i

L ` fold rd[rs], τ ⇒
i
addi rd, rs, 0

L ` unfold rd, rs ⇒
i
addi rd, rs, 0

L ` ld rd, rs(i) ⇒
i
ld rd, rs(i)

L ` st rd(i), rs ⇒
i
st rd(i), rs

L ` mov rd, rs ⇒
i
addi rd, rs, 0

L ` movi rd, i ⇒
i
movi rd, i

L ` movl rd, l
′ ⇒

i
movi rd, L(l′)

L ` bgt rs, rt, l ⇒
i
bgt rs, rt, L(l)

INSTRUCTION SEQUENCES

L ` c ⇒
i
Dc(M(i)) L ` I ⇒s M(i+1)..j

L ` c; I ⇒s Mi..j

Dc(M(i)) = jd (L(l′))

L ` jd l′ ⇒s Mi..i

Dc(M(i)) = jmp r

L ` jmp r ⇒s Mi..i

HEAP VALUES

L ` vi ⇒w M(j + i) for 0 ≤ i ≤ n

L ` 〈vo, . . . , vn〉 ⇒h
Mj..(j+n)

L ` I ⇒s Mi..j

L ` code [Γ].I ⇒
h

Mi..j

HEAP, REGISTER FILE, PROGRAM

L ` H(l) ⇒
h

ML(l)..L(l+1)−1 0 ≤ l < |H|

L ` H ⇒ M

L ` R(r̂i) ⇒w R(ri) 0 ≤ i ≤ 15

L ` R ⇒ R

Layout(H) ` H ⇒ M

Layout(H) ` R ⇒ R

Layout(H) ` I ⇒s Mpc..pc+|I|−1,

where ∃l ∈ Dom(H).(H(l) = code [Γ].I ′, I ⊆tail I ′, and
pc = Layout(H)(l) + |I ′| − |I|)

(H,R, I) ⇒ (M, R, pc)

Figure 3.9: Relating FTAL programs to machine states.

48

machine program, and provide proofs of:

FPCC Initial Condition: Inv (S0)

FPCC Preservation: ΠS :State. Inv (S)→ Inv (Step (S))

FPCC Progress: ΠS :State. Inv (S)→SP (S)

The invariant simply has to ensure that the machine state at each step corresponds to

a well-typed FTAL program, which will allow us to use the formalized versions of the

proofs of the progress and preservation lemmas for FTAL to generate formal proofs of

the corresponding properties of the invariant. Since the definition of Inv requires us to

state that an FTAL program is well-typed, it must be expressed not just in terms of FTAL

programs, but of their typing derivations:

Inv(S) = ∃P : program. ((` P) ∧ (P ⇒ S))

Hence, the invariant holds on a state if there exists an FTAL program that is well-typed

and translates to the state.

The proof of the initial condition can now be obtained directly in the process of trans-

lating an initial well-formed FTAL program to machine state as described in Section 3.2.1.

It remains, therefore, to prove the two lemmas.

3.2.3 The Preservation and Progress Properties

Progress in our case is easy to prove: since the invariant states that there exists a well-

typed FTAL program that translates to the current state, it is obvious by examination of

the translation rules that such an FTAL program will never translate to a state in which

the program counter points to an illegal instruction.

The remaining proof term, for Preservation, is thus the most involved of the generated

FPCC proofs. It is obtained in the following way:

Given a program P and a typing derivation for ` P , we know by FTAL progress

that there exists a program P ′ such that P 7−→ P ′. Furthermore, by FTAL preservation,

49

` P
(translate)

+3

(evaluate)

��

S

(S
tep)

��

` P ′
translate ?

+3__________

__________ Step (S)

Figure 3.10: Relationship between FTAL evaluation and machine semantics.

we know that ` P ′. Now, the premise of our FPCC Preservation theorem provides us

with a machine state S such that P ⇒ S, and we need to show that there exists another

well-typed program that translates to Step (S). The semantics of FTAL has been set up so

that this well-typed program is exactly P ′. It remains now for us to prove that indeed

P ′ ⇒ Step (S), as diagrammed in Figure 3.10.

Essentially, we need to show that the FTAL evaluation relation corresponds to the ma-

chine’s step function. This is proved by induction on the typing derivation of ` P . For

each possible case, we use inversion1 on the structure of P , the FTAL evaluation relation,

the translation relation, and the machine Step function to gain the necessary informa-

tion about the structure of P ′, S, and Step (S). Many of the cases of this proof are fairly

straightforward.

Let us briefly consider one of the interesting cases of the Preservation proof, which is

when the current instruction is alloc. Corresponding to the diagram in Figure 3.10, we
1“Inversion” is simply a process of backwards reasoning– given a premise, one infers what judgment rule

must have been used to prove it and then adds the assumptions of that rule to one’s list of available facts. For
example, if we know an FTAL program is well-typed then, by inversion, the only possible rule that would
allow one to prove such a judgment is (PROG) on page 35; hence, we can infer, for instance, that there must
also exist a proof that the heap component of the program is well-typed.

50

have the following setup:

P = (H,R, alloc rd[τ1 , . . . , τn
]; I)

P ′ = (H ′, R′, I)

S = (M, R, pc)

Step (S) = (M, R′, (pc + 1))

where H ′, R′, and R
′ can be determined by the operational semantics of FTAL and the

definition of the Step function (Figure 2.2).

We now need to prove that P ′ is related to Step (S) by the translation. First, we know

by the properties of the layout function that applying it to an extended heap maintains

the mapping of all the existing labels in the old heap. Now, the FTAL heap is updated

after evaluation but the memory stays the same after the step. However, since the update

to the heap is only with uninitialized values, which can be translated to any word, the

translation will still hold on the unchanged memory. Thus, we can show that the updated

heap translates to the unaltered memory. Then, relating the two updated register files

is not difficult, nor is showing that the residual instruction sequence corresponds to the

next program counter value. Well-formedness of P (i.e. ` P) is used in various steps of

this proof, for instance, to reason that any labels in the registers are within the domain of

the heap, hence the layout function on the updated heap, H ′, preserves the mappings of

existing labels.

This completes the translation, or compilation, of a well-typed FTAL program to an

FPCC code package. The FTAL program can be shown to correspond to an initial ma-

chine state and that state can be shown safe using the proofs of Preservation and Progress

developed here.

Coq code: translate_ftal.v defines the translation of Section 3.2.1 as well as con-

tains the complete FPCC proofs described in this section.

51

3.3 Implementation in Coq

An implementation of the syntactic approach presented in this thesis consists of an FTAL

compiler which generates FPCC packages. An FPCC package consists of two parts: the

initial machine state and the proof of safety. The proof of safety can be further divided

into two pieces: one is the proof of the Preservation and Progress theorems and the other

is the proof that the initial machine state satisfies the Initial Condition property. Note

that the proofs of Preservation and Progress (which are constructed semi-automatically)

do not change for any machine state which has been generated by compiling an FTAL

program. Thus, these properties need only be proven once and can then be reused for all

FPCC packages produced by this compiler.

In the following sections, I first describe our Coq representation of the machine and

the encoding of FTAL syntax and semantics and soundness theorems. Next I discuss

implementation of the formal proofs of FPCC Preservation and Progress, which were done

interactively using the Coq proof assistant. Finally, I describe a compiler which parses

an FTAL program, performs type-checking, and automatically produces the Coq term

representing the typing derivation. This typing derivation is then used to construct the

proof of the Initial Condition property.

Coq is a proof assistant tool for the calculus of inductive constructions (Section 2.2).

It provides an interactive interface for constructing formal proofs in the logic. The Coq

syntax2 for λ-abstraction, λX : A.B, is [X:A]B. The syntax for dependent products, ΠX :

A.B, is (X:A)B and Coq allows for the normal arrow abbreviation of this when the bound

variable does not occur in the body, e.g. A->B. Coq syntax for inductive definitions is that

described in Section 2.2. Coq uses the sort Prop for logical propositions and the sort Set

for the type of data type specifications (booleans, natural numbers, lists, programs, etc.).
2This syntax is for Coq version 7, using which these proofs were built.

52

3.3.1 Encoding Machine Semantics

The Coq encoding of the machine to which FTAL programs are translated is very similar

to the presentation in Section 2.1. For example, having defined the registers as an induc-

tive set with 16 constructors, I then define the memory and register file as being functions

and the state as a triple of memory, register file, and program counter:

Definition Word := nat.

Inductive _Reg : Set := _r0 : _Reg | _r1 : _Reg | ...

Definition Mem := Word -> Word.

Definition _RegFile := _Reg -> Word.

Definition State := (Mem * (_RegFile * Word)).

The instruction set is then defined as an inductive definition with appropriate con-

structors:

Inductive _Instr : Set

:= _add : _Reg -> _Reg -> _Reg -> _Instr

| _addi : _Reg -> _Reg -> Word -> _Instr

| _movi : _Reg -> Word -> _Instr

| _bgt : _Reg -> _Reg -> Word -> _Instr

| _jd : Word -> _Instr

| _jmp : _Reg -> _Instr

| _ld : _Reg -> _Reg -> Word -> _Instr

| _st : _Reg -> Word -> _Reg -> _Instr

| _ill : _Instr.

I next decide on how to encode the instructions above as natural numbers and write a

Coq function which uses the appropriate arithmetic operations to decode a natural num-

ber into an _Instr:

1ex

Definition Dc : Word -> _Instr := ...

We are now ready to encode the semantics of the machine as given in Section 2.1. For

updating the register file and memory, I define auxiliary functions, as in the code below

(beq_reg compares equality of two register names and returns a boolean):

Definition updateregfile

: _RegFile -> _Reg -> Word -> _RegFile

53

:= [R:_RegFile; rd:_Reg; v:Word]

([r:_Reg] if (beq_reg r rd) then v else (R r)).

Definition Step : State -> State

:= [St:State] Cases St of (M, (R, pc)) =>

Cases (Dc (M pc)) of

(_add rd rs rs’)

=> (M, ((updateregfile R rd

(plus (R rs) (R rs’))),

(S pc)))

| (_jd l)

=> (M, (R, l))

| ...

| _ill => St

end

end.

Finally, we can state the safety policy we wish to enforce and define what a safe machine

state is. The MultiStep function simply applies the Step function to the given state n

times:

Definition SP [S:State]

:= (let (M,T’)=S in (let (R,PC)=T’ in ~(Dc (M PC))=_ill)).

Definition Safe [S:State]

:= (n:nat)(SP (MultiStep n S)).

3.3.2 Encoding FTAL Syntax

Encoding the FTAL language is a more involved process. I start by defining each syntactic

category as an inductive type. For example, the FTAL types are encoded as follows:

Definition initflag := bool.

Inductive Omega : Set

:= intty : Omega

| codety : (Map Reg Omega) -> APTy -> Omega

| tupty : (list Omega) -> (list initflag) -> Omega

| recty : (OmegaL (S O)) -> Omega.

The list in the tuple type constructor is the usual definition of a list, found in the Coq

library. Hence, the tuple type constructor takes as arguments a list of types and a list of

initialization flags, encoded as booleans. (Alternatively, I could have used a list of pairs

54

but in practice this encoding seemed easier to work with.) Map is defined as a list of pairs

where the first element of each pair is used as a key for lookup and update operations.

The type of a register file (used by codety) is a map from registers (definition presented

below) to types. I also define a “well-formed Map”, used later, as being a list of pairs in

which the first element of every pair in the list is distinct from all others.

A well-formed type in the FTAL language will never have free type variables, but

variables may appear in a recursive type. Hence, I represent the type under the recursive

type constructor by a “lifted” version of Omega which uses deBruijn indices to represent

variables. The parameter of the OmegaL type below tracks the number of free type vari-

ables in the term to ensure the correctness of our substitution and unfolding functions for

recursive types:3

Inductive OmegaL : nat -> Set

:= inttyL : (OmegaL O)

| codetyL : (i:nat) (Map Reg (OmegaL i)) ->

APTy -> (OmegaL i)

| tuptyL : (i:nat) (list (OmegaL i)) ->

(list initflag) -> (OmegaL i)

| rectyL : (i:nat) (OmegaL (S i)) -> (OmegaL i)

| varL : (i:nat) (OmegaL (S i))

| liftL : (i:nat) (OmegaL i) -> (OmegaL (S i)).

FTAL registers are defined as in the machine above. Unlike the presentation in pre-

vious sections, we carry the special allocation pointer separately from the rest of of the

register file, hence there are only 15 registers defined for FTAL. The r15 register, or AP

below, is simply a label (which is defined to be a natural number). The special allocation

pointer types are encoded as an inductive definition and the types of register files and

heaps are maps from registers or labels, respectively, to Omega (the heap type also requires

that the map be well-formed, as defined above):
3This encoding of variables is discussed in more detail in Section 6.2.

55

Inductive Reg : Set := r0 : Reg | r1 : Reg | ...

Definition label := nat.

Definition AP := label. (* alloc. ptr. (r15) *)

Inductive APTy : Set

:= fresh : APTy

| used : nat -> APTy.

Definition RegFileTy := (Map Reg Omega).

Definition HeapTy := (WFMap label Omega).

The remainder of the definitions for FTAL syntax are fairly intuitive and match closely

the presentation in Figure 3.1, except that r15 and its type are carried separately as AP and

APTy:

Inductive Instr : Set

:= add : Reg -> Reg -> Reg -> Instr

| addi : Reg -> Reg -> int -> Instr

| alloc : Reg -> (list Omega) -> Instr

| bgt : Reg -> Reg -> label -> Instr

| bump : int -> Instr

| fold : Reg -> Omega -> Reg -> Instr

| ld : Reg -> Reg -> int -> Instr

| mov : Reg -> Reg -> Instr

| movi : Reg -> int -> Instr

| movl : Reg -> label -> Instr

| st : Reg -> int -> Reg -> Instr

| unfold : Reg -> Reg -> Instr.

Inductive InstrSeq : Set

:= iseq : Instr -> InstrSeq -> InstrSeq

| jd : label -> InstrSeq

| jmp : Reg -> InstrSeq.

Inductive WordVal : Set

:= wl : label -> WordVal

| wi : int -> WordVal

| wuninit : Omega -> WordVal

| wfold : WordVal -> Omega -> WordVal.

Inductive HeapVal : Set

:= tuple : (list WordVal) -> HeapVal

| code : RegFileTy -> APTy -> InstrSeq -> HeapVal.

Definition Heap := (WFMap label HeapVal).

Definition RegFile := (Map Reg WordVal).

Definition Program := (Heap * (RegFile * (AP * InstrSeq))).

56

3.3.3 Encoding FTAL Semantics and Soundness

Each judgment form of the dynamic and static semantics can be viewed as a relation and

is also encoded as an inductive definition. For every evaluation or typing rule, there

is an associated constructor of the appropriate inductive definition. (This allows us to

use Coq’s inductive elimination constructs to perform inversion and induction on typing

derivations.) I show the encoding of several evaluation rules in Figure 3.11.

The reglookup and regupdext are to be read as propositions stating that looking up

the value of a given register in a register file (which is defined to be a Map) yields the given

word value and that updating or extending the mapping of a register in a register file

results in a new register file, respectively. For the heap (and similarly heap type, which are

both defined as well-formed Maps) the hextend proposition requires that the label being

added to the domain of the heap is not already being mapped in the heap. The hupdate

proposition only holds true when the label is in fact present in the heap mapping. These

propositions are defined inductively as relations on Maps.

The encodings of the main static judgments are given in Figures 3.12 and 3.13.

In order to formally prove the soundness of FTAL as encoded above, we proceed by

first proving the same lemmas that are listed in Section 3.1.5. The statements of these

lemmas in Coq, while slightly verbose, are essentially the same as those listed in that

section. I generate the proofs of these lemmas interactively using Coq proof “tactics.” The

tactics of the proof assistant correspond to the steps that would be used in a hand proof,

e.g. induction, inversion, rewriting, application of rules (constructors), etc. I present the

statements of a few of these lemmas in Coq below (Register File Update, the second case

of Canonical Word Forms, and several cases of the Heap Extension lemma):

Lemma regfile_update

: (HT:HeapTy; R,R’:RegFile; G,G’:(Map Reg Omega))

(rd:Reg; v:WordVal; t:Omega)

(WFRegFile HT R G) ->

(WFWordVal HT v t) ->

(regupdext R rd v R’) ->

(regupdext G rd t G’) ->

(WFRegFile HT R’ G’).

57

Lemma can_word_forms_code

: (H:Heap; HT:HeapTy; v:WordVal; G:RegFileTy; T:APTy)

(WFHeap H HT) ->

(WFWordVal HT v (codety G T)) ->

(EX l | v=(wl l) /\ (EX I | (hlookup H l (code G T I)))).

Lemma heap_ext_2

: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(v:WordVal; t’:Omega)

(WFHeap H HT) ->

(hsize H l) ->

(htextend HT l t HT’) ->

(WFWordVal HT v t’) ->

(WFWordVal HT’ v t’).

Lemma heap_ext_4

: (I:InstrSeq)

(H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(R:RegFileTy; A:APTy)

(WFHeap H HT) ->

(hsize H l) ->

(htextend HT l t HT’) ->

(WFInstrSeq HT R A I) ->

(WFInstrSeq HT’ R A I).

Lemma heap_ext_7

: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(h:HeapVal)

(WFHeap H HT) ->

(hsize H l) ->

(htextend HT l t HT’) ->

(hextend H l h H’) ->

(WFHeapVal HT’ h t) ->

(WFHeap H’ HT’).

The main theorems for the soundness of FTAL, preservation and progress, follow from

the various lemmas:

Theorem ftal_preserv

: (P,P’:Program) (WFProgram P) -> (Eval P P’) -> (WFProgram P’).

Theorem ftal_progress

: (P:Program) (WFProgram P) -> (EX P’ | (Eval P P’)).

We have now completely formalized the syntactic soundness proof of FTAL. In the

next section, I discuss the encoding of the translation relations between FTAL and the ma-

chine, and how FTAL soundness is used to produce the proofs of the FPCC Preservation

and Progress theorems.

58

Inductive Eval : Program -> Program -> Prop

:= ev_add

: (H:Heap; R,R’:RegFile; r15:AP; I’:InstrSeq)

(rd,rs,rs’:Reg; rsval,rsval’:int)

(reglookup R rs (wi rsval)) ->

(reglookup R rs’ (wi rsval’)) ->

(regupdext R rd (wi (plus rsval rsval’)) R’) ->

(Eval (H,(R,(r15,(iseq (add rd rs rs’) I’))))

(H,(R’,(r15,I’))))

| ev_alloc

: (H,H’:Heap; R,R’:RegFile; r15:AP; I’:InstrSeq)

(rd:Reg; V:(list Omega))

(regupdext R rd (wl r15) R’) ->

(hextend H r15 (tuple (makeUninitTup V)) H’) ->

(Eval (H, (R, (r15, (iseq (alloc rd V) I’))))

(H’, (R’, (r15, I’))))

| ev_bump

: (H:Heap; R:RegFile; r15:AP; I’:InstrSeq)

(i:int; l:nat)

(hsize H l) ->

(Eval (H, (R, (r15, (iseq (bump i) I’))))

(H, (R, (l, I’))))

| ev_jd

: (H:Heap; R:RegFile; r15:AP)

(l:label; G:RegFileTy; T:APTy; I’:InstrSeq)

(hlookup H l (code G T I’)) ->

(Eval (H, (R, (r15, (jd l))))

(H, (R, (r15, I’))))

| ev_movl

: (H:Heap; R,R’:RegFile; r15:AP; I’:InstrSeq)

(rd:Reg; l:label)

(regupdext R rd (wl l) R’) ->

(Eval (H, (R, (r15, (iseq (movl rd l) I’))))

(H, (R’,(r15, I’))))

| ev_store

: (H,H’:Heap; R:RegFile; r15:AP; I’:InstrSeq)

(rd,rs:Reg; i:int; l:label;

V,V’:(list WordVal); w:WordVal)

(reglookup R rd (wl l)) ->

(reglookup R rs w) ->

(hlookup H l (tuple V)) ->

(updatetuple V i w V’) ->

(hupdate H l (tuple V’) H’) ->

(Eval (H, (R, (r15, (iseq (st rd i rs) I’))))

(H’,(R, (r15, I’))))

| ...

Figure 3.11: Coq encoding of FTAL dynamic semantics

59

Inductive RegFileSubtype (* register file subtyping: G <= G’ *)

: RegFileTy -> RegFileTy -> Prop

:= weaken

: (G,G’:RegFileTy)

((r:Reg; t:Omega) (reglookup G’ r t) -> (reglookup G r t)) ->

(RegFileSubtype G G’).

Inductive WFWordVal (* well-formed word values: HT |- w : t wval *)

: HeapTy -> WordVal -> Omega -> Prop

:= int_wval : (HT:HeapTy; i:int)(WFWordVal HT (wi i) intty)

| label_wval

: (HT:HeapTy; l:label; t,t’:Omega)

(htlookup HT l t’) ->

(Subtype t’ t) ->

(WFWordVal HT (wl l) t)

| fold_word_wval

: (HT:HeapTy; w:WordVal; t:OmegaR; t’:Omega)

(RUnlift (RUnfold t))=t’ ->

(WFWordVal HT w t’) ->

(WFWordVal HT (wfold w (recty t)) (recty t)).

Inductive WFInstrSeq (* well-formed instruction sequences: HT; G |- I *)

: HeapTy -> RegFileTy -> APTy -> InstrSeq -> Prop

:= s_add

: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)

(rd,rs,rs’:Reg)

(reglookup G rs intty) ->

(reglookup G rs’ intty) ->

(regupdext G rd intty G’) ->

(WFInstrSeq HT G’ T I) ->

(WFInstrSeq HT G T (iseq (add rd rs rs’) I))

| s_alloc

: (HT:HeapTy; G,G’:RegFileTy; I:InstrSeq)

(rd:Reg; n:nat; V:(list Omega))

n=(length V) ->

(regupdext G rd (tupty V (makeUninitTupty V)) G’)->

(WFInstrSeq HT G’ (used n) I) ->

(WFInstrSeq HT G fresh (iseq (alloc rd V) I))

| s_jd

: (HT:HeapTy; G,G’:RegFileTy; T:APTy)

(l:label)

(htlookup HT l (codety G’ T)) ->

(RegFileSubtype G G’) ->

(WFInstrSeq HT G T (jd l))

| s_st

: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)

(rd,rs:Reg; i:int;

V,V’:(list initflag); Ts:(list Omega); t:Omega)

(reglookup G rd (tupty Ts V)) ->

(reglookup G rs t) ->

(ListNth ? Ts i t) ->

(updatetupty V i V’) ->

(regupdate G rd (tupty Ts V’) G’) ->

(WFInstrSeq HT G’ T I) ->

(WFInstrSeq HT G T (iseq (st rd i rs) I))

| ...

Figure 3.12: Coq encoding of FTAL static semantics: main definitions (1 of 2)

60

Inductive WFHeapVal (* well-formed heap values: HT |- h : t hval *)

: HeapTy -> HeapVal -> Omega -> Prop

:= tuple_wf

: (HT:HeapTy; wl:(list WordVal); tl:(list Omega); il:(list initflag))

(WFWordValinitList HT wl tl il) ->

(WFHeapVal HT (tuple wl) (tupty tl il))

| code_wf

: (HT:HeapTy; G:RegFileTy; I:InstrSeq; T:APTy)

(WFInstrSeq HT G T I) ->

(WFHeapVal HT (code G T I) (codety G T)).

Inductive WFHeap (* well-formed heap *)

: Heap -> HeapTy -> Prop

:= heap_wf

: (H:Heap; HT:HeapTy)

(EX s | (hsize H s) /\

(htsize HT s) /\

((n:label; h:HeapVal) (hlookup H n h) -> (lt n s)) /\

((n:label; t:Omega) (htlookup HT n t) -> (lt n s)) /\

((n:label) (lt n s) -> (EX h | (hlookup H n h))) /\

((n:label) (lt n s) -> (EX t | (htlookup HT n t))) /\

((n:label; h:HeapVal; t:Omega)

(hlookup H n h)->(htlookup HT n t)->(WFHeapVal HT h t)) /\

(OrdHeap H)

) ->

(WFHeap H HT).

Inductive WFRegFile (* well-formed register file *)

: HeapTy -> RegFile -> RegFileTy -> Prop

:= regfile_wf

: (HT:HeapTy; R:RegFile; G:RegFileTy)

((r:Reg; t:Omega)

(reglookup G r t) ->

(EX w | (reglookup R r w) /\ (WFWordVal HT w t))) ->

((r:Reg; v:WordVal; l:label; n:nat)

(reglookup R r v) ->

(stripWV v)=(wl l) ->

(htsize HT n) ->

(lt l n)) ->

(WFRegFile HT R G).

Inductive WFProgram (* well-formed program *)

: Program -> Prop

:= program_wf

: (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;

l:AP; t:APTy; I:InstrSeq)

(WFHeap H HT) ->

(WFRegFile HT R G) ->

(WFap HT l t) ->

(WFInstrSeq HT G t I) ->

(EX l | (EX G’ | (EX T’ | (EX I’ | (EX n |

(hlookup H l (code G’ T’ I’)) /\

(ISubDepth I I’ n)))))) ->

(WFProgram (H, (R, (l, I)))).

Figure 3.13: Coq encoding of FTAL static semantics: main definitions (2 of 2)

61

3.3.4 Encoding FPCC Preservation and Progress

The translation relations (not shown here) are represented as a set of inductive definitions

which follow precisely the presentation in Figure 3.9, for example,

Inductive TrProgram

: Program -> State -> Prop := ...

The global invariant for FPCC can be defined in terms of the translation between a

well-formed FTAL program and the machine state:

Definition Inv [S:State]

:= (EX P:Program | (WFProgram P) /\ (TrProgram P S)).

Now we proceed to prove the FPCC Progress theorem:

Theorem Progress : (S:State) (Inv S) -> (SP S).

As mentioned in Section 3.2.3, the Progress theorem is straightforward. Using several

Coq “Inversion” tactics, we determine that there exists a well-formed instruction sequence

which translates to the program counter of the state. Then we perform case analysis on

the well-formed instruction sequence judgment and show that in every possible case, the

program counter of the state must be pointing to a non-illegal instruction.

Next is the FPCC Preservation theorem, which is more involved to prove but which

follows the discussion in Section 3.2.3:

Theorem Preservation : (S:State) (Inv S) -> (Inv (Step S)).

With these two theorems, we can now prove that a machine state will be safe if the FPCC

Initial Condition property is satisfied:

Theorem Safety : (S:State) (Inv S) -> (Safe S).

3.3.5 Generating the Initial Condition

In order to generate the Initial Condition, we would use a compiler that takes an FTAL

program and compiles it to a machine state, producing the necessary proofs in the pro-

cess.4 The structure of this compiler is fairly straightforward: After parsing an FTAL
4A complete compiler has not actually been developed because FTAL is a very simplistic language and

we have been working with an “ideal” machine anyway.

62

source file, type-checking is performed. The algorithm for type-checking follows closely

the structure of the inductively defined static semantics in Coq. (Similarly, the compiler

structures for FTAL abstract syntax mirror the Coq encoding.) Thus, the type-checker, as

it analyzes the FTAL program, simultaneously builds a Coq term representing the proof

of well-formedness of the program. In particular, if P:Program, then the type-checking

phase produces a term, D:(WFProgram P).

Once type-checking is successfully completed, the compiler then translates the FTAL

program into a machine state. Again, this is done in such a manner that a Coq term repre-

senting the machine state and the proof of the relation between the FTAL program and the

machine state can be generated. That is, for some S:State, a term, T:(TrProgram P S),

is constructed. Along with the typing derivation term of P produced above, we can now

construct a proof that the global invariant holds on S. This can then be composed with the

Safety theorem of the previous section to produce a complete proof of the safety of the

machine state S, as specified by our safety policy.

3.3.6 The Complete System

We now have a complete system that starts with a typed assembly language program and

compiles it into an FPCC package, consisting of an initial machine state and a proof of

safety. Although my current implementation is not as realistic as [15, 4], the advantages

of the syntactic FPCC approach are still clear.

With respect to PCC implementations in general, the two most practical considera-

tions are the extent of the trusted computing base (TCB) and the size of the proofs that

are shipped with code. As for the former, the TCB of my syntactic FPCC implementation

would consist of the following: (1) a parser, which converts the state of the raw machine

into the encoding in the logic; (2) the encoding of the machine step function in the logic,

which must accurately capture the semantics of the real machine (that is, it must be ad-

equate); and (3) the proof-checker of the logic. The first two will necessarily exist in any

63

PCC system. For syntactic FPCC (and FPCC in general), the proof-checker is smaller and

more reliable than that of existing PCC systems because the logic used is much simpler.5

In addition, the VCgen is completely eliminated from the system.

Regarding the proofs that are shipped with syntactic FPCC packages, note that a large

portion of the safety proof is static—the Progress and Preservation theorems hold regard-

less of the particular FTAL program from which the machine state was compiled. Hence,

this part of the proof does not need to be re-supplied (or even re-checked) with every in-

dividual FPCC package. Furthermore, the remaining portion of the proof simply consists

of the initial FTAL program and its typing derivation. The typing derivation can be easily

and quickly generated by either the code producer or consumer. Thus, if proof size is es-

pecially critical, the only additional information that needs to be supplied with the initial

machine state is the FTAL program itself with minimal type annotations.

3.4 Summary

This chapter has illustrated one of the main contributions of my dissertation, which is the

development of a new “syntactic” approach to producing foundational proof-carrying

code. Unlike earlier FPCC methods, I have been able to present a relatively simple and

straightforward compilation from TAL programs to certified machine code. Albeit the

technical product may not be as tangible (I have used a very restricted form of TAL and

an idealized machine), I have dealt with several theoretical aspects that required much

more effort in existing semantic FPCC frameworks. Among these features are, primarily,

mutable memory, first-class code pointers, and recursive types.

5That is, taking into consideration the type-related axioms that need to be added to the base logic of those
systems. Furthermore, although our prototype uses the Coq proof assistant which integrates the proving and
checking processes it would not be at all difficult to separate the proof-checker out into a very small, simple
program, as has been done in previous FPCC approaches.

64

Chapter 4

Interfacing Type Systems and

Certified Machine Code

As discussed in the introduction, the initial proof-carrying code (PCC) systems specified

a safety policy using a logic extended with many (source) language-specific rules. While

allowing implementation of a scalable system, this approach to PCC suffers from too large

of a trusted computing base (TCB). It is still difficult to trust that the components of this

system – the verification-condition generator, the proof-checker, and even the logical ax-

ioms and typing rules – are free from error.

The development of another family of PCC implementations, known as Foundational

Proof-Carrying Code (FPCC), was intended to reduce the TCB to a minimum by express-

ing and proving safety using only a foundational mathematical logic without additional

language-specific axioms or typing rules. The trusted components in such a system are

mostly reduced to a much simpler logic and the proof-checker for it.

Both these approaches to PCC have so far one feature in common, which is that they

begin with a single source language and compile type-correct programs from that lan-

guage into machine code with a safety proof. However, the runtime systems of these

frameworks still include components that are not addressed in the safety proof [3, 19]:

low-level memory management libraries, garbage collection, debuggers, marshallers, etc.

65

Furthermore, the issue of producing a safety proof for code that is compiled and linked

together from two different source languages was not addressed. (Some recent efforts on

this aspect in the context of the original PCC systems is cited in the Related Work.)

In this chapter, I introduce an FPCC framework for constructing certified machine

code packages from typed assembly language that will interface with a similarly certified

runtime system. The framework permits the typed assembly language to have a “foreign

function” interface in which stubs, initially provided when the program is being written,

are eventually compiled and linked to code that may have been written in a language with

a different type system, or even certified directly in the FPCC logic using a proof assistant.

Experience has shown that foundational proofs are much harder to construct than

those in a logic extended with type-specific axioms. The earliest FPCC systems built

proofs by constructing sophisticated semantic models of types in order to reason about

safety at the machine level. That is, the final safety proof incorporated no concept of

source level types – each type in the source language would be interpreted as a predi-

cate on the machine state and the typing rules of the language would turn into lemmas

which must prove properties about the interaction of these predicates. While it seems that

this method of FPCC would already be amenable to achieving the goals outlined in the

previous paragraph, the situation is complicated by the complexity of the semantic mod-

els [25, 5, 2] that were required to support a realistic type system. Thus, it is not clear yet

how one would integrate the semantic models of different source type systems and safety

proofs of the runtime components to produce a complete package.

For my work, I adopt the “syntactic” approach to FPCC, introduced in the previous

chapter. In this framework, the machine level proofs do indeed incorporate and use the

syntactic encoding of elements of the source type system to derive safety. The presentation

of the syntactic approach in Chapter 3 involves a monolithic translation from type-correct

source programs to a package of certified machine code. In this chapter, I refine the ap-

proach by inserting a generic layer of reasoning above the machine code which can (1) be a

target for the compilation of typed assembly languages, (2) certify low-level runtime sys-

66

System Library
Interface

Machine

Compiled System Library
Code Code

Safety proof Safety proof

Source Program
Code

Compiler

High-level Type System

Figure 4.1: FPCC Certified Runtime Framework.

tem components using assertions as in Hoare logic, and (3) “glue” together these pieces

by reasoning about the compatibility of the interfaces specified by the various types of

source code.

A diagram of my framework is given in Figure 4.1. Source programs are written in

a typed high-level language and then passed through a certifying compiler to produce

machine code along with a proof of safety. The source level type system may provide a

set of functionality that is accessed through a library interface. At the machine level, there

is an actual library code implementation that should satisfy that interface. The non-trivial

problem is how to design the framework such that not only will the two pieces of machine

code link together to run, but that the safety proofs originating from two different sources

are also able to “link” together, consistent with the high-level interface specification, to

produce a unified safety proof for the entire set of code.

Notice that the interaction between program and library is two-way: either piece of

code may make direct or indirect function calls and returns to the other. Ideally, I want

to be able to certify the library code with no knowledge of the source language and type

system that will be interacting with it. At the same time I would like to support first-class

code pointers at all levels of the code. Methods for handling code pointers properly have

been one of the main challenges of FPCC and are one of the differentiating factors between

67

semantic and syntactic FPCC approaches. For the framework in this paper, I have factored

out most of the code pointer reasoning that is needed when certifying library code so that

the proofs thereof can be relatively straightforward.

In the following section I present the layer of reasoning which will serve as the com-

mon interface for code compiled from different sources. Then I present a typical typed

assembly language, extended with library interfaces and external call facilities. I finally

show how to compile this language to the target machine, expanding external function

stubs, and linking in the runtime library, at the same time producing the proof of safety

of the complete package.

Coq code: The Coq (version 8.0) prototype code of the development in this chapter

may be downloaded from:

http://flint.cs.yale.edu/flint/publications/rtpcc.html

4.1 A Language for Certified Machine Code (CAP)

Recalling the discussion in Section 2.2.4, we know what type of proof we are looking for;

the hard part is to generate that proof of safety. Previous approaches for FPCC [4, 5, 33]

have achieved this by constructing an induction hypothesis, also known as the global

invariant, which can be proven (e.g. by induction) to hold for all states reachable from the

initial state and is strong enough to imply the safety condition. The nature of the invariant

has ranged from a semantic model of types at the machine level (Appel et al. [4, 5, 77])

to a purely syntactic well-formedness property [33, 34] based on a type-correct source

program in a typed assembly language.

What I have developed in this chapter refines these previous approaches. I will still

be presenting a typed assembly language in Section 4.3, in which most source programs

are written. However, I introduce another layer between the source type system and

the “raw” encoding of the target machine in the FPCC logic. This is a “type system” or

“specification system” that is defined upon the machine encoding, allowing us to reason

68

about its state using assertions that essentially capture Hoare logic-style reasoning. Such

a layer allows more generality for reasoning than a fixed type system, yet at the same time

is more structured than reasoning directly in the logic about the machine encoding.

The language is called CAP and it uses the same machine syntax as presented in Fig-

ure 2.1. The syntax of the additional assertion layer is given below:

P, Q, R ∈ Pred = State → Prop

Φ ∈ CdSpec = Word ⇀ (Word × Pred)

CmdList 3 C ::= ∅ | c; C

WordList 3 W ::= ∅ | w; W

The name CAP is derived from its being a “Certified Assembly Programming” lan-

guage. An initial version was introduced in joint work with Yu [97] and used to certify

a dynamic storage allocation library. The version I use for this thesis introduces some

improvements such as a unified data and code memory, assertions on the whole machine

state, and support for user-specifiable safety policies. Yu [99] has independently extended

the CAP system in a different direction to support certification of temporal properties for

concurrent assembly code.

Assertions (P ,Q,R) are predicates on the machine state; the code specification (Φ) is a

partial function mapping memory addresses to a pair of an integer and a predicate. The

integer gives the length of the command sequence at that address and the predicate is the

precondition for the block of code. (The function of the length element is to allow us to

specify the addresses of valid code areas of memory based on Φ.)

The operational semantics of the machine has already been presented in Section 2.1. I

now introduce CAP inference rules followed by some important safety theorems.

69

c ∈ {add, addi, mov, movi, ld}
∀S.(P (S) ∧ curcmd(S)=c) → (Q(Step(S)) ∧ SP(S))
Φ

S̀P
{Q}C

Φ
S̀P

{P} c; C
(CAP-PURE)

∀S.(P (S) ∧ curcmd(S)=st rd(i), rs)
→ (Q(Step(S)) ∧ SP(S) ∧ ¬InCodeArea(Φ, S.R(rd)+i))

Φ
S̀P

{Q}C

Φ
S̀P

{P} st rd(i), rs; C
(CAP-ST)

∀S. (P (S) ∧ curcmd(S)=bgt rs, rt, w)
→ ((S.R(rs) ≤ S.R(rt) → Q(Step(S)))

∧ (S.R(rs) > S.R(rt) → Q′(Step(S)))
∧ SP(S))

Φ
S̀P

{Q}C where Φ(w) = (n,Q′)

Φ
S̀P

{P} bgt rs, rt, w; C
(CAP-BGT)

∀S.(P (S) ∧ curcmd(S)=jd w) → (Q′(Step(S)) ∧ SP(S))
where Φ(w) = (n,Q′)

Φ
S̀P

{P} jd w; ∅
(CAP-JD)

∀S.(P (S) ∧ curcmd(S)=jmp r) → (Q′(Step(S)) ∧ SP(S))
where Φ(S.R(r)) = (n,Q′)

Φ
S̀P

{P} jmp r; ∅
(CAP-JMP)

Flatten(W, M, f) Φ
S̀P

{P} (Map(Dc, W))
for all f where Φ(f) = (length(W), P)

S̀P
M : Φ

(CAP-CDSPEC)

S̀P
M : Φ Φ

S̀P
{P} (Map(Dc, W))

Flatten(W, M, pc) InCodeArea(Φ, pc) P (M, R, pc)

S̀P
(M, R, pc)

(CAP-STATE)

Figure 4.2: CAP inference rules.

70

4.1.1 Inference Rules

CAP adds a layer of inference rules (“typing rules”) allowing us to prove specification

judgments of the forms:

Φ
S̀P

{P}C well-formed command sequence

S̀P
M : Φ well-formed code specification

S̀P
(M, R, pc) well-formed machine state

The inference rules for these judgments are shown in Figure 4.2. The rules for well-

formed command sequences essentially require that if the given precondition P is satis-

fied in the current state, then (1) the global predicate SP holds on that state and (2) there

must be some postcondition Q, which is the precondition of the remaining sequence of

commands, that holds on the state after executing one step.1 The rules directly refer to the

Step function of the machine; control flow instructions additionally use the code specifi-

cation environment Φ in order to allow for the certification of mutually dependent code

blocks. The global predicate SP is provided as a parameter to the whole process of type-

checking a program; it is threaded through all the rules but does not change.

I group as “pure” commands all those which do not involve control flow and do not

change the memory (i.e. everything other than branches, jumps, and st). The st com-

mand requires an additional proof that the address being stored to is not in the code area

(i.e. I do not permit self-modifying code). curcmd(S) is defined as:

curcmd(M, R, pc) = Dc(M(pc))

The InCodeArea predicate in the rules uses the code addresses and sequence lengths

in Φ to determine whether a given address lies within the code area. The (CAP-CDSPEC)
1In the abstract syntax of CAP given here, only the precondition of an entire code block is specified explic-

itly; the postconditions of intermediate commands in the code block are embedded in the term representing
the well-formedness of the code. Of course, in practice we could provide a concrete syntax for CAP that
allows the user to annotate instructions explicitly with pre- and postconditions.

71

rule ensures that the addresses and sequence lengths specified in Φ are consistent with

the code actually in memory.

The Flatten predicate is defined as:

Flatten(∅, M, f) = True

Flatten(w; W, M, f) = M(f)=w ∧ Flatten(W, M, f+1)

Note also, I use dot notation to refer to the components of a triple like the state: S.M,

S.R, etc.

4.1.2 Safety Properties

The machine of Section 2.1 will execute continuously, even if an illegal instruction is

encountered. Given a well-formed CAP state, however, we can prove that it satisfies:2

Theorem 4.1 (CAP Soundness)

For any safety policy SP and state S, if
S̀P

S then (1) SP(S) and (2)
S̀P

Stepn(S) for all

integers n ≥ 0.

Proof sketch The proof is very straightforward: (1) the CAP inference rules ensure that

SP holds on every well-formed state, and (2) by induction on the well-formed command

sequence judgment. �

For the purposes of FPCC, we are interested in obtaining safety proofs in the context

of our policy as described in Section 2.2.3. For this chapter, I again define the basic safety

policy as requiring that the machine always be at a valid instruction:

BasicSP (M, R, pc) = (Dc (M(pc)) 6= illegal)

2An even stronger statement of CAP soundness can be made, as given in [97] but I do not need it for my
development here.

72

It is fairly straightforward to show that any well-formed CAP state will be safe accord-

ing to this policy. That is, no matter what the global SP parameter is instantiated to (e.g.

it could simply be a trivial True predicate), the CAP inference rules at a minimum will

enforce the basic safety policy:

Lemma 4.2 For any SP, if
S̀P

S then BasicSP(S).

Proof Follows directly from examination of the well-formedness rules. Since there is no

rule for checking an illegal command, we know that the current command is not that,

since it is well-formed by the top-level rule (CAP-STATE). �

Now, from this lemma and the CAP Soundness theorem, we can derive the following

result for general safety policies:

Theorem 4.3 (CAP Safety)

For any SP and S, if
S̀P

S then Safe(S, λS
′ :State.SP(S′) ∧ BasicSP(S′)) according to the

definition of Safe on page 25.

Proof Directly from Lemma 4.2 and CAP Soundness. �

Threading an arbitrary SP through the typing rules is a novel feature not found in the

initial version of CAP [97]. In that case, there was no way to specify that an arbitrary

safety policy beyond BasicSP (which essentially provides type safety) must hold at every

step of execution. For this chapter, I will actually not make use of this feature but in the

next chapter, I will show how it is used with a more realistic and complex FPCC safety

policy.

From now on, I will write CAP judgment forms with a bulleted placeholder (
•̀

S) to

indicate the use of a trivial global safety predicate (λS.True) for SP.

Thus, to produce an FPCC package we just need to prove that the initial machine

state is well-formed in CAP with respect to the desired safety policy. This provides a

structured method for constructing FPCC packages in our logic. However, programming

and reasoning in CAP is still much too low-level for the practical programmer. We need to

73

provide a method for compiling programs from a higher-level language and type system

to CAP. The main purpose of programming directly in CAP will then be to “glue” code

together from different source languages and to semi-automatically certify particularly

low-level libraries such as memory management, threads, etc.. In the next few sections, I

present a “conventional” typed assembly language and show how to compile it to CAP.

Coq code: The definition of CAP and the proved theorems of this section are in the

file captis.v.

4.2 The Code Pointer Problem

Before going on to a typed assembly language, let us try to understand one of the diffi-

culties that arise when trying to use a Hoare logic-based framework to certify low-level

machine code. Consider the following annotated CAP code blocks that may be part of a

larger set of code making up a program or a system library:

23: { R(r0) > 0 }

movi r2, 9;

{ R(r0) > 0 /\ R(r2) = 9 }
...

{ R(r2) > 9 }

jd 52

52: { R(r2) > 5 }
...

{ R(r0) = R(r2) /\ R(r2) > 10 }

jd 78

78: { R(r2) > 8 }
...

{ R(r0) = 7 }

jd 23

The relevant part of the CAP code specification is composed from the preconditions

of these code blocks:

Φ = { 23:{ R(r0) > 0 }, 52:{ R(r2) > 5 }, 78:{ R(r2) > 8 }, ... }

74

It is easy enough to verify these code blocks because the control flow only involves

direct jumps. Now, suppose instead of jd 52, the last command of the first block was

jmp r5; i.e. register r5 contains a pointer to a continuation. It may be that r5 holds either

the address 52 or 78. Now, it is a bit more tricky to see how one would verify correctness

of this jump. One immediate option is to have the precondition of the jump to r5 specify

all the possible targets of the jump:

23: { R(r0) > 0 }
...

{ R(r2) > 9 /\ (R(r6) = 52 \/ R(r6) = 78) }

jmp r6

Then we would verify that the precondition (or postcondition) of the jump is stronger

than the preconditions of all the possible targets. One obvious problem with this approach

is that it requires analysis of the whole program in order to determine all possible targets

of such indirect jumps. While this might be easily enough done, it is not appropriate if this

code is supposed to be used as a runtime library. We do not want to have to recompute the

return targets of library code, in order to form new preconditions, each time it is linked

with a newly compiled source language program. Basically, when verifying library code,

we would like a natural way to do so without worrying about the user code with which

it will interact.

In order to achieve this modularity, one possibility could be to introduce an abstract

predicate, codeptr, to be used in the Hoare logic assertions. Thus, we could have a pre-

condition like:

23: { R(r0) > 0 }
...

{ R(r2) > 9 /\ codeptr(R(r6), { R(r2) > 5 }) }

jmp r6

stating that the value in register r6 is a code pointer whose precondition requires the

value in r2 be greater than 5. The difficulty then is how to keep the reasoning about the

codeptr predicates consistent. Since these predicates will appear within the definition of

75

Φ, we cannot define codeptr(w,P) as meaning Φ(w) = P because that would introduce

a circularity in the definition. One might imagine trying to add additional inference rules

to CAP for the jmp rule and the top-level rules that tie together the use of codeptr as

an abstract predicate, but I have not been able to achieve that. Furthermore, there is the

complication of mutually recursive code. Consider the case where the code pointer in

r6 above may itself perform an indirect jump through a register back to location 23. Not

only will the code pointer predicates be nested, they require a recursive type because each

depends on the other.

The solution I have adopted for my purposes, based on that introduced in [97, 98], is

to take advantage of the fact that our CAP language is in fact embedded in a higher-order

logic. Thus, when verifying a CAP code block such as 23 above, I quantify over the code

specification and precondition with an assumption that the postcondition will meet the

requirements of the indirect jump. For example, the block:

23: { Pre } // R(r0) > 0

C; // command list

{ Post } // R(r2) > 9

jmp r6

would actually be certified in CAP using the judgment form (assuming some safety policy,

SP):

Φ
S̀P

{Pre}C; jmp r6

Now, instead of directly certifying the code like this, where the simple precondition

will not be sufficient to handle the indirect jump, I prove this judgment in CAP as the

following lemma:

∀Φ, P. P ⇒ Pre ∧ (∃Q. Φ(R(r6)) = Q ∧ Post ⇒ Q) (1)

→ Φ
S̀P

{P}C; jmp r6

The quantified predicate P here implies the necessary precondition of the code block

76

itself, as well as the fact that there is a code pointer in the return register whose precondi-

tion is satisfied by Post.3

Now, this is only half the story. It allows us to verify the indirect jump of a single

code block, but when linking a whole program together, we have to provide a concrete

predicate for P . Again, P can be instantiated using a disjunction of all possible targets of

the jump, just like our earlier concrete precondition:

{ R(r2) > 9 /\ (R(r6) = 52 \/ R(r6) = 78) }

We are left with the premise of the lemma (1) above which is to show that this instan-

tiation of P satisfies the necessary conditions on the return code pointer. This can again

easily be done by analysis over the various cases of the disjunction.

So far, we have somewhat improved modularity of the certification process since the

code block itself is verified independent of its actual targets. While this approach may be

sufficient for verifying the actual code blocks of a runtime library (as shown in [97, 98]),

when compiling from a higher-level type system, we still need a way to link together the

code pointers of the high-level type system (and their associated type interfaces) with the

low-level CAP preconditions of the library code. For this purpose, I leverage my syntactic

approach to certified code in order to provide an automatic method of linking compiled

source programs from a type system to library code certified safe using the Hoare logic

based inference system of CAP. Details of how this is done are contained in the remainder

of this chapter.

As a brief overview, the idea is to instantiate the predicate P with an invariant based on

Inv of the previous chapter (Section 3.2.2). For the example above, we could use something

like: λS. ∃P : program. (` P : Γ) ∧ (PΓ ⇒ S). The program P is not completely abstract

here but is constrained by the TAL type Γ for which this program must be well-formed in

order to show the necessary premise of lemma (1) above. Γ in this case would be a TAL

code type such as {r0 : int>0, r6 : ∀[{r2 : int>9}]} (assuming a fancier TAL type system

which tracks integer values). By reasoning (syntactically) over the properties of the type
3P ⇒ Q is defined as ∀S.P (S) → Q(S).

77

system, we would be able to show that this invariant implies the necessary precondition

Pre of the code block, and it also enforces the correctness of the indirect jump. To show

the latter, we actually need to know more about the formation of the entire CAP code

specification– e.g. , that its preconditions are consistent with the TAL code types. Details

and an example of how the complete CAP code specification is generated when linking

compiled TAL code to certified CAP code are given in Sections 4.4.3 and 4.4.4.

Using the method outlined in the last few paragraphs, I am able to verify runtime

library code in CAP independent of the source language type system or other code that

it interacts with. Furthermore, use of syntactic type system-based invariants allows the

safety proof of compiled source code to automatically “link” with the proof of these certi-

fied CAP code blocks, once the necessary lemmas such as (1) above have been established.

4.3 Extensible Typed Assembly Language with Runtime System

In this section, I introduce an extensible typed assembly language (XTAL), again based

on that of Morrisett et al. [52]. After presenting the full syntax of XTAL, I give here only

a brief overview of its static and dynamic semantics,4 since it is very similar to FTAL

in the previous chapter, except for the addition of primitive arrays, a newpair “macro”

instruction, and stub values in the code heap. The data and code portions of the heap

have also been separated in XTAL and it uses pairs instead of the more general tuples of

FTAL.

4.3.1 Syntax

To simplify the presentation, XTAL’s types (see Figure 4.3) involve only integers, pairs,

and integer arrays. (I have extended the Coq prototype implementation to include ex-

istential, recursive, and polymorphic code types.) The code type ∀[Γ] describes a code

pointer that expects a register file satisfying Γ. The register file type assigns types to the
4Chapter 5 gives the gory details of a more realistic variant of XTAL.

78

word values in each register and the heap type keeps track of the heap values in the data

heap. I have separated the code and data heaps at this level of abstraction because the

code heap will remain unchanged throughout the execution of a program.

Unlike many conventional TALs, my language supports “stub values” in its code

heap. These are placeholders for code that will be linked in later from another source

(outside the XTAL system). Primitive “macro” instructions that might be built into other

TALs, such as array creation and access operations, can be provided as an external library

with interface specified as XTAL types. I have also included a typical macro instruction

for allocating pairs (newpair) in the language. When polymorphic types are added to the

language, this macro instruction could potentially be provided through the external code

interface; however, in general, providing built-in primitives can allow for a richer specifi-

cation of the interface where the type system is too limited (see the typing rule for newpair

below).

The abstract state of an XTAL program is composed of code and data heaps, a register

file, and current instruction sequence. Labels are simply integers and the domains of

the code and data heaps are to be disjoint. Besides the newpair operation, the arithmetic,

memory access, and control flow instructions of XTAL correspond directly to those of the

machine defined in 2.1. The movl instruction is constrained to refer only to code heap

labels. Note that programs are written in continuation passing style; thus every code

block ends with some form of jump to another location in the code heap.

4.3.2 Static and Dynamic Semantics

The dynamic (operational) semantics of the XTAL abstract machine is defined by a set of

rules of the form P 7→ P ′. This evaluation relation is entirely standard (as in Figure 3.2)

except that the case when jumping to a stub value in the code heap is not handled. The

complete rules are omitted here.

For the static semantics, I define a set of judgments as illustrated in Figure 4.4. Only

79

(type) τ ::= int | array | τ
0
× τ

1
| ∀[Γ]

(reg file type) Γ ::= {r0 :τ
0
, . . . , rn :τ

n
}

(heap type) Ψ ::= {l0 :τ
0
, . . . , ln :τ

n
}

(label) l ::= 0 | 1 | . . .

(register) r ::= r0 | r1 | . . . | r7

(word val) v ::= l | i

(code heap val) h ::= code [Γ].I | stub [Γ].∅

(heap val) h ::= [i0, . . . , in] | 〈v0, v1〉

(instr) ι ::= add rd, rs, rt | movi rd, i | movl rd, l | ld rd, rs(i)

| st rd(i), rs | newpair rd[τ0 , τ1]

(instr seq) I ::= ι; I | jd l | jmp r

(code heap) C ::= {l0 7→ h0, . . . , ln 7→ hn}

(data heap) H ::= {l0 7→ h0, . . . , ln 7→ hn}

(reg file) R ::= {r0 7→ v0, . . . , rn 7→ vn}

(program) P ::= (C, H, R, I)

Figure 4.3: XTAL syntax.

a few of the critical XTAL typing rules are presented here. The top-level typing rule for

XTAL programs requires well-formedness of the code and data heaps, register file, and

current instruction sequence, and that I is somewhere in the code heap:

` C ` H : Ψ C; Ψ ` R : Γ C; Γ ` I
∃l ∈ Dom(C). C(l) = code [Γ′].I ′ and I ⊆tail I ′

` (C, H, R, I)
(PROG)

Heap and register file typing depends on the well-formedness of the elements in each.

Stub values are simply assumed to have the specified code type. From the instruction

typing rules, we show below the rules for newpair, jd, and jmp. The newpair instruction

expects initialization values for the newly allocated space in registers r0 and r1 and a

pointer to the new pair is put in rd.

80

Judgment Meaning
` Γ0 ⊆ Γ1 Γ0 is a register file subtype of Γ1

` (C, H, R, I) (C, H, R, I) is a well-formed program
`C C is a well-formed code heap
`H :Ψ H is a well-formed data heap of type Ψ
C; Ψ ` R :Γ R is a well-formed reg. file of type Γ
C `h cdval h is a well-formed code heap value
Ψ `h :τ hval h is a well-formed data heap value of type τ
Ψ ` v :τ v is a well-formed word value of type τ
C; Γ `I I is a well-formed instruction sequence

Figure 4.4: Static judgments.

C; Γ `I

C `code [Γ].I cdval
(CODE) C ` stub [Γ].∅ cdval

(STUB)

Γ(r0) = τ
0

Γ(r1) = τ
1

C; Γ{rd :τ
0
× τ

1
} `I

C; Γ `newpair rd[τ0 , τ1]; I
(IS-NEWPAIR)

typeof(C(l)) = ∀[Γ ′] ` Γ ⊆ Γ′

C; Γ ` jd l
(IS-JD)

Γ(r) = ∀[Γ′] ` Γ ⊆ Γ′

C; Γ ` jmp r
(IS-JMP)

Although the details of the type system are certainly important, the key thing to be

understood here is just that we are able to encode the syntactic judgment forms of XTAL

well-formedness in the FPCC logic and prove soundness in Wright-Felleisen style [93].

We will then refer to these judgments in CAP assertions during the process of proving

machine code safety.

4.3.3 External Code Stub Interfaces

XTAL can pass around pointers to arrays in its data heap but has no built-in operations

for allocating, accessing, or modifying arrays. These are provided through code stubs:

81

newarray 7→ stub [{ r0: int, r1: int, r7:(∀[{r0:array}]) }].∅

arrayget 7→ stub [{ r0:array, r1: int, r7:(∀[{r0: int}]) }].∅

arrayset 7→ stub [{ r0:array, r1: int, r2: int, r7:(∀[{r0:array}]) }].∅

newarray expects a length and initial value as arguments, allocates and initializes a new

array accordingly, and then jumps to the code pointer in r7. The accessor operations sim-

ilarly expect an array and index arguments and will return to the continuation pointer in

r7 when they have performed the operation. As is usually the case when dealing with

external libraries, the interfaces (code types) defined above do not provide a complete

specification of the operations (such as bounds-checking issues). Section 4.4.3 discusses

how we deal with this in the context of the safety of XTAL programs and the final exe-

cutable machine code.

4.3.4 Soundness

As usual, we need to show that our XTAL type system is sound with respect to the oper-

ational semantics of the abstract machine. This can be done using the standard progress

and preservation lemmas. However, in the presence of code stubs, the complete semantics

of a program is undefined, so at this level of abstraction we can only assume that those

typing rules are sound. In the next section, when compiling XTAL programs to the real

machine and linking in code for these libraries and stubs, we will need to prove at that

point that the linked code is sound with respect to the XTAL typing rules. Let us define

the state when the current XTAL program is jumping to external code:

Definition 4.4 (External call state) We define the current instruction of a program, (C,H,R, I),

to be an external call if I ∈ {jd l, jmp r, bgt . . . , bgti . . .} and C(l) = stub [Γ].∅ or C(R(r)) =

stub [Γ].∅, as appropriate.

Now we can state qualified versions of the standard soundness lemmas:

82

Theorem 4.5 (XTAL Progress) If ` P and the current instruction of P is not an external

call then there exists P ′ such that P 7→ P ′.

Theorem 4.6 (XTAL Preservation) If ` P and P 7→ P ′ then ` P ′.

These theorems are proved by induction on the well-formed instruction premise (C; Γ `

I) of the top level typing rule (` P). Of course the proof of these must be done entirely in

the FPCC logic in which the XTAL language is encoded.

In the previous chapter, I demonstrated how to get from these proofs of soundness

directly to the FPCC safety proof. However, now we have an extra level to go through

(the CAP system) in which we will also be linking external code to XTAL programs, and

we must ensure safety of the complete package at the end.

Coq code: axtalp.v contains the definitions and proofs for an alternate version of

XTAL than that presented here. The version in the file does not actually include the

newpair instruction, but it does include primitive arrays as described in this section and

also supports polymorphic code types, some of the details of which are more involved

and will be covered in Chapters 5 and 6.

4.4 Compilation and Linking

In this section I first define how abstract XTAL programs will be translated to, and laid

out in, the real machine state (the runtime memory layout). I also define the necessary

library routines as CAP code (the runtime system). Then, after compiling and linking an

XTAL program to CAP, I must show how to maintain the well-formedness of that CAP

state so that we can apply Theorem 4.3 to obtain the final FPCC proof of safety.

4.4.1 The Runtime System

In my simple runtime system, memory is divided into three sections–a static data area

(used for global constants and library data structures), a read-only code area (which might

83

be further divided into subareas for external (E) and program (C) code), and the dynamic

heap area, which can grow indefinitely in our idealized machine. I use a data allocation

framework where a heap limit, stored in a fixed allocation pointer register,5 designates

a finite portion of the dynamic heap area as having been allocated for use. (The safety

policy could use this to specify the definition of “readable” and “writeable” memory.)

4.4.2 Translating XTAL Programs to CAP

I now outline how to construct (compile) an initial CAP machine state from an XTAL

program. Given an initial XTAL program, we need the following (partial) functions or

mappings to produce the CAP state:

• AC : label ⇀ Word – a layout mapping from XTAL code heap labels to CAP machine

addresses.

• AD : label ⇀ Word – a layout mapping from XTAL data heap labels to CAP machine

addresses. Both the domain and range of the two layout functions should be dis-

joint. I use A without any subscript to indicate the union of the two: A = AC ∪AD.

• E : Word ⇀ CmdList × Pred – the external (from XTAL’s point of view) code blocks

and their CAP preconditions for well-formedness. Proving that these blocks are

well-formed according to the preconditions will be a proof obligation when verify-

ing the safety of the complete CAP state. The range of AC may overlap with the

domain of E – these addresses are the implementation of XTAL code stubs.

With these elements, the translation from XTAL programs to CAP is quite straight-

forward. As in Chapter 3, I describe the translation by a set of relations and associated

inference rules (Figures 4.5 and 4.6). Register files and word values translate fairly di-

rectly between XTAL and the machine. XTAL labels are translated to machine addresses

using the A functions. Every heap value in the code and data heaps must correspond to
5XTAL source programs use fewer registers than the actual machine provides.

84

WORD VALUES A ` v ⇒ w

A ` l ⇒ A(l)
(TR-LAB)

A ` i ⇒ i
(TR-INT)

INSTRUCTION SEQUENCES (selected rules) AC ` I ⇒ C

AC ` I ⇒ C

AC ` add rd, rs, rt; I ⇒ add rd, rs, rt; C
(TR-ADD)

AC ` I ⇒ C

AC ` movi rd, i; I ⇒ movi rd, i; C
(TR-MOVI)

AC(l) = w AC ` I ⇒ C

AC ` movl rd, l; I ⇒ movi rd, w; C
(TR-MOVL)

AC(l) = w

AC ` jd l ⇒ jd w
(TR-JD)

AC ` I ⇒ C

AC ` newpair rd[τ0 , τ1]; I ⇒ Cnewp; C
(TR-NEWPAIR)

HEAP VALUES AC ` h ⇒ W A ` h ⇒ W

AC ` I ⇒ C C = Map(Dc, W)

AC ` code [Γ].I ⇒ W
(TR-CODE)

A ` [i0, . . . , in] ⇒ n; i0; . . . ; in
(TR-ARRAY)

A ` vi ⇒ wi i ∈ {0, 1}

A ` 〈v0, v1〉 ⇒ w0;w1
(TR-PAIR)

where
Cnewp = mov rd, rap; addi rap, rap, 2; st rd(0), r0; st rd(1), r1

Figure 4.5: XTAL to CAP translation (1 of 2).

85

REGISTER FILE, HEAPS, AND PROGRAM

A ` R(r) ⇒ R(r) for all r ∈ Dom(R)

A ` R ⇒ R
(TR-RF)

AC ` C(l) ⇒ W Flatten(W, M,AC(l)) for all l ∈ Dom(C)

AC ` C ⇒ M
(TR-CHEAP)

A ` H(l) ⇒ W Flatten(W, M,A(l)) for all l ∈ Dom(H)
AD(l) + length(W) < R(rap) DLytConsist(AD,H)

A; R ` H ⇒ M
(TR-HEAP)

AC ` C ⇒ M A ` H ⇒R M

A; R ` (C,H) ⇒ M
(TR-HEAPS)

A; R ` (C,H) ⇒ M A ` R ⇒ R AC ` I ⇒ W Flatten(W, M, pc)
∃l. C(l) = code [Γ].I ′ ∧ I ⊆tail I ′ ∧ pc=AC(l) + |I ′| − |I|
∀w ∈ Dom(E).Flatten(Fst(E(w)), M, w)
CLytConsist(AC ,AD, C, E)

E ;A ` (C,H,R, I) ⇒ (M, R, pc)
(TR-PROG)

where

CLytConsist(AC ,AD, C, E) = onetoone(AC) ∧ Dom(AC) = Dom(C)
∧ Dom(AC) ∩ Dom(AD) = ∅
∧ C(l) = code [Γ].I → AC(l) /∈ Dom(E)
∧ C(l) = stub [Γ].∅ → AC(l) ∈ Dom(E)

DLytConsist(AD,H) = ∀l, l′ ∈ Dom(H). (l 6= l′ ∧ A ` H(l) ⇒ W)
→ (AD(l) + length(W) < AD(l′))

Figure 4.6: XTAL to CAP translation (2 of 2).

86

an appropriately translated sequence of words in memory. All XTAL instructions trans-

late directly to a single machine command except newpair which translates to a series of

commands that adjust the allocation pointer to make space for a new pair and then copy

the initial values from r0 and r1 into the new space. The stubs in the XTAL code heap

translation are handled in the top-level translation rule (when E is Flatten’ed).

The top-level rules (Figure 4.6) also enforce the set of necessary consistency constraints

on the layout functions and external code blocks. CLytConsist ensures (1) that the code

layout mapping is one-to-one,6 (2) that the domains of the code heap and the code heap

mapping are exactly the same, (3) the code heap and data heap labels are distinct, and (4)

that the external code library does not provide code for those addresses that are already

associated with XTAL blocks. DLytConsist simply ensures that all data heap entities will

be mapped to non-overlapping sections of memory.

4.4.3 Generating the CAP Proofs

In this section I proceed in a top-down manner by first stating the main theorem we need

to establish. The theorem says that for a given runtime system, any well-typed XTAL

program that compiles and links to the runtime will result in an initial machine state that

is well-formed according to the CAP typing rules. Applying Theorem 4.3, we would then

be able to produce an FPCC package certifying the safety of the initial machine state.

Theorem 4.7 (XTAL-CAP Safety Theorem) For some specified external code

environment E , and for all P and A, if ` P (in XTAL) and E ;A ` P ⇒ S, then
•̀

S (in

CAP, recalling that • indicates a trivial global safety predicate).

To prove that the CAP state is well-formed (using the (CAP-STATE) rule, Figure 4.2),

we need a code heap specification, Φ, and a top-level precondition, P , for the command

sequence at the current program counter. The code specification is generated as follows:
6Such a strong constraint might not be strictly necessary but it makes the proofs easier, because one does

not have to worry about the case of two distinct XTAL code heap values, with potentially different types,
mapping to the same CAP code.

87

Φ = CpGen(E ,AC , C), where

CpGen(E ,AC , C)(w)

=











CpInv(AC , C,Γ) if w /∈ Dom(E) and ∃l.AC(l) = w ∧ C(l) = (code [Γ].I)

Snd(E(w)) if w ∈ Dom(E)

That is, for external code blocks, the precondition comes directly from E , while for

code blocks that have been compiled from XTAL, the CAP preconditions are constructed

by the following predicate generator:

CpInv(AC , C,Γ) = λS.∃AD,Ψ,H,R. (`C) ∧ (`H :Ψ) ∧ (C; Ψ ` R :Γ)

∧ (A; S.R ` (C,H) ⇒ S.M) ∧ (A ` R ⇒ S.R)

For any given program, the code heap and layout (C and AC) must be unchanged,

therefore they are global parameters of these predicate generators. CpInv captures the fact

that at a particular machine state there is a well-typed XTAL memory and register file that

syntactically corresponds to it. We only need to specify the register file type as an argu-

ment to CpInv because the XTAL typing rules for the well-formed register file and heap

will imply all the necessary restrictions on the data heap structure. One of the main in-

sights of this work is the definition of CpInv, which allows us to both establish a syntactic

invariant on CAP machine states as well as define the interface between XTAL and library

code at the CAP level. CpInv is based on a similar idea as the global invariant defined in

the previous chapter but instead of a generic, monolithic safety proof using the syntactic

encoding of the type system, CpInv makes clear what the program-specific preconditions

are for each command (instruction) and allows for relatively easy manipulation and rea-

soning thereupon, as well as interaction with other type system-based invariants.

Returning to the proof of Theorem 4.7, if we define the top-level precondition of the

(CAP-STATE) rule to be CpInv(AC , C,Γ), then it is trivially satisfied on the initial state S by

the premises of the theorem. We now have to show well-formedness of the code at the

current program counter, Φ
•̀
{P}C, and, in fact, proofs of the same judgment form must

88

be provided for each of the code blocks in the heap, according to the (CAP-CDSPEC) rule.

The correctness of the CAP code memory is shown by the theorem:

Theorem 4.8 (XTAL-CAP Code Heap Safety) For a specified E , and for any XTAL

program state (C,H,R, I), layout functions A, and machine state (M, R, pc), such that

` (C,H,R, I) and E ;A ` (C,H,R, I) ⇒ (M, R, pc), if Φ = CpGen(E ,AC , C), then
•̀

M : Φ.

This depends in turn on the proof that each well-typed XTAL instruction sequence

translated to machine commands will be well-formed in CAP under CpInv:

Theorem 4.9 (XTAL-CAP Instruction Safety) For a specified E , and for all AC , C, I , Γ,

and C (where Φ = CpGen(E ,AC , C)), if (a) C; Γ `I and (b) AC ` I ⇒ C, then (c)

Φ
•̀
{CpInv(AC , C,Γ)}C.

Proof sketch The proof proceeds by induction on I . I outline here the proof of three

cases. The complete proof, especially the mechanized one, is of course somewhat

involved so I try here to just cover the high-level, intuitive ideas.

Case movl rd, l; I
′: From (a) and inversion on the typing rule for movl we can derive that

typeof(C(l)) = ∀[Γ′] and Ψ;Γ{rd :∀[Γ′]} `I ′. Then from (b) and rule (TR-MOVL), we get

AC(l) = w, AC ` I ⇒ C
′ , and C = movi rd, w; C′ .

We can now apply (CAP-PURE) with Q = CpInv(AC , C,Γ{rd :∀[Γ′]}). The premises of

(CAP-PURE) require that we show three premises hold - that Q holds on Step(S), that

SP(S), and that C
′ is well-formed under Q. The latter follows by the induction

hypothesis. Our global safety predicate here is trivial (SP = λS.True). Thus, the

remaining obligation is to show that given CpInv(AC , C,Γ)(S) and the fact that the

current CAP command is a movi command, then Q(Step(S)). The state of our proof here

can be illustrated as follows:

89

` Pmovl
(translate)

+3 S

(S
tep)��

(?)
translate ?

+3__________

__________ Step (S)

That is, CpInv essentially captures the proposition that a well-formed XTAL program

translates to a CAP state.7 By the premise of this theorem, we have the top arrow in the

diagram above, and by our instantiation of Q, we must provide an XTAL program (or at

least the heap and register file) to fill in the question mark and show that it corresponds

to the new CAP state. Just as in the previous chapter, the idea is to use the formalized

XTAL soundness lemmas to obtain a well-typed XTAL program to fill in the question

mark. Then, the diagram above becomes very similar to that of Figure 3.10. In this case,

however, we don’t explicitly care about the relationship between the two XTAL

programs. This part of the proof now has the same structure as the Preservation proof

described in Section 3.2.3.

Case newpair rd[τ0 , τ1]; I
′: I will outline this case diagrammatically. Translating a single

XTAL new pair instruction, we get a sequence of four machine commands. Thus,

consider the following figure:
7Actually CpInv does not use the complete judgment ` P , only the well-formedness of the heaps and

register file, but I abuse the notation in these diagrams for the sake of conciseness.

90

` Pnewpair
(translate)

+3 S0

(S
tep)��

Q1(?)
(?)

+3 S1

(S
tep)��

... (S
tep)��

Q4(?)
translate ?

+3__________

__________ Step 4(S0)

As in the previous case, we are able to determine by the semantics of the XTAL new pair

operation and the CAP commands implementing it that, in fact, the last predicate of the

sequence can be

Q4 = CpInv(AC , C,Γ{rd :Γ(r0) × Γ(r1)})

because we have ended up in a state where the destination register is now pointing to a

pair in memory. Notice that unlike the previous case, when we need to instantiate the

new heap and heap type of the Q4 predicate (expanding the definition of CpInv), they

will now be instantiated with modified versions to reflect that the XTAL data memory

now contains a new pair in it.

Now the question remains as to the intermediate pre/post-conditions. A simple way to

deal with these is to thread along the relationship between Pnewpair and the initial CAP

state, keeping track of updates in each step. So, each of the predicates, for i ∈ {1, 2, 3},

will be of the form:

Qi = λSi. ∃S. CpInv(AC , C,Γ)(S) ∧ Si = updi(S)

At each step, I keep track of the changes made so far from the original CAP state that

corresponded to a XTAL program with a current newpair instruction. The updi function,

91

describing the updates to the new state, can be simply generated from the strongest

postcondition given the current CAP command. By the fourth command, the update

function will have described the appropriate changes to memory and register file to

allow the CAP machine state to once again correspond to the next well-formed XTAL

program state and instruction sequence.

Case jd l: By examination of the translation rules, we know here that C = jd w where

AC(l) = w. Also, by inversion on the XTAL typing rule (IS-JD), we get that

typeof(C(l)) = ∀[Γ′]. It follows therefore that either C(l) = code [Γ ′].I ′ for some I ′, or else

C(l) = stub [Γ′].∅. In the first case, we are jumping to other XTAL code; in the second, we

are jumping to code external to the actual XTAL program. We have to apply the (CAP-JD)

rule to prove the well-formedness of C. This mainly requires showing that there exists

some Q′ to which Φ(w) is mapped8 such that Q′(Step(S)).

In the first subcase, let Q′ = CpInv(AC , C,Γ′). We know that

Φ(w) = CpInv(AC , C,Γ′) = Q′ by the definition of CpGen (page 88) and the fact that

AC(l) = w and C(l) = code [Γ ′].I ′. Since the Q′ here has the form of a CpInv predicate, the

reasoning for the remainder of this subcase follows the two previous instruction cases,

where we are just filling in pieces of the diagram.

In the second subcase, we can determine from the translation (see the CLytConsist

predicate in Figure 4.6) that AC(l) ∈ Dom(E). Thus, let Q′ = Snd(E(w)). Now, to show

that Q′ is satisfied by the jump command, we use the result of Proof Obligation 4.11

below. Proof Obligation 4.11 enforces that the XTAL type specification of an external

code block is consistent with its actual precondition in E . Thus, we are once again

returned to showing that the CpInv predicate holds after the jump. Notice that CpInv does

not require anything of the program counter or current instruction sequence so in this

case of a jump command, CpInv(AC , C,Γ′)(S) → CpInv(AC , C,Γ′)(Step(S)).

Hence, one of the main components for each case of this theorem’s proof is to show that
8Actually Φ(w) maps to a pair (n, Q′) but I ignore the n here.

92

a correspondence similar to that of Figure 3.10 holds. �

Finally, establishing the theorems above depends on satisfying some proof obligations

with respect to the external library code and its interfaces as specified at the XTAL level.

First, we must show that the external library code is well-formed according to its supplied

preconditions:

Proof Obligation 4.10 (External Code Safety) For a given E , if Φ = CpGen(E ,AC , C) for

any AC and C, then Φ
•̀
{Snd(E(w))}Fst(E(w)), for all w ∈ Dom(E).

For now, we assume that the proofs of this lemma are constructed semi-automatically

using the rules for well-formedness of CAP commands. This lemma is utilized in the

proof of Theorem 4.8.

Secondly, when linking the external code with a particular XTAL program, where cer-

tain labels of the XTAL code heap are mapped to external code addresses, we have to

show that the typing environment that would hold at any XTAL program that is jumping

to that label implies the actual precondition of that external code:

Proof Obligation 4.11 (Interface Correctness) For a given E , AC , and C, and for all l such

that C(l) = stub [Γ].∅ and AC(l) = w, if CpInv(AC , C,Γ)(S) then Snd(E(w))(S).

These properties must be proved for each instantiation of the runtime system E . With

them, the proofs of Theorems 4.9, 4.8, and, finally, 4.7 can be completed.

4.4.4 arrayget Example

As a concrete example of the process discussed in the foregoing subsection, let us consider

arrayget. The XTAL type interface is defined in Section 4.3.3. A CAP machine implemen-

tation of this function could be:

Caget = [ld r8, r0(0); addi r1, r1, 1; bgt r1, r8, bnderr; add r0, r0, r1; ld r0, r0(0); jmp r7]

93

The runtime representation of an array in memory is a length field followed by the actual

array of data. We assume that there is some exception handling routine for out-of-bounds

accesses with a trivial precondition defined by E(bnderr) = (C bnderr, Qbnderr).

Before describing the CAP assertions for the safety of Caget, notice that the code re-

turns indirectly to an XTAL function pointer. Similarly, the arrayget address can be passed

around in XTAL programs as a first-class code pointer. While the syntactic type system

handles these code pointers quite easily using the relevant XTAL types, dealing with code

pointers in a Hoare logic-based setup like CAP requires a little bit of machinery.

We can thus proceed to directly define the precondition of Caget as,

Qaget = CpInv(AC , C, { r0:array, r1: int, r7:(∀[{r0: int}]) })

for some AC and C. Then we certify the library code in CAP by providing a derivation

of (Φ
•̀
{Qaget}Caget) . We do this by applying the appropriate rules from Figure 4.2 to

track the changes that are made to the state with each command. When we reach the

final jump to r7, we can then show that CpInv(AC , C, {r0 : int}) holds, which must be the

precondition specified for the return code pointer by Φ(S.R(r7)) (see the definition of Φ in

the beginning of Section 4.4.3). The problem with this method of certifying arrayget, how-

ever, is that we have explicitly included details about the source language type system

in its preconditions. In order to make the proof more generic, while at the same time be

able to leverage the syntactic type system for certifying code pointers, I follow a similar

approach as in [97]: First, I define generic predicates for the pre- and postconditions, ab-

stracting over an arbitrary external predicate, Paget. The actual requirements of the arrayget

code are minimal (for example, that the memory area of the array is readable according

to the safety policy). The post-condition predicate relates the state of the machine upon

exiting the code block to the initial entry state:

94

Pre = λPaget.λS. Paget(S) ∧ SafeToRead(S.M, S.R(r0), S.R(r1)+1)

Post = λ(M, R, pc). λ(M′ , R′ , pc′). M
′ = M ∧ pc′ = S.R(r7)

∧ R′(r0) = M(R(r0)+R(r1)+1) ∧ . . .

Now we certify the arrayget code block, quantifying over all Paget and complete code

specifications Φ, but imposing some appropriate restrictions on them:

∀Φ, Paget. Φ(bnderr) = Qbnderr ∧ (∀S, S′ .Pre(Paget)(S) ∧ Post(S)(S′) → Φ(S.R(r7))(S′))

→ Φ
S̀P

{Pre(Paget)}Caget

Thus, under the assumption that the Pre predicate holds, we can again apply the in-

ference rules for CAP commands to show the well-formedness of the Caget code. When

we reach the final jump, we show that the Post predicate holds and then use that fact with

the premise of the formula above to show that it is safe to jump to the return code pointer.

The arrayget code can thus be certified independent of any type system, by introducing

the quantified Paget predicate. Now, when we want to use this as an external function for

XTAL programs, we instantiate Paget with Qaget above. We have to prove the premise of

the formula above, (∀S, S′ .Pre(Qaget)(S) ∧ Post(S)(S′) → Φ(S.R(r7))(S′)). Proving this is

not difficult, because we use properties of the XTAL type system to show that from a state

satisfying the precondition– i.e. there is a well-formed XTAL program whose register file

satisfies the arrayget type interface– the changes described by the Post predicate will result

in a state to which there does correspond another well-formed XTAL program, one where

the register r0 is updated with the appropriate element of the array.

Hence, we can let E(arrayget) = (Caget,Pre(Qaget)) and we have satisfied Proof Obliga-

tion 4.10. Proof Obligation 4.11 follows almost directly given the definition of Qaget.

95

4.5 Summary

I have shown in this chapter the design of a typed assembly language supporting “foreign

function” calls to external code. Programs written in this language will be safe if the

external code operates according to the type specification. I have then shown how to

certify the external (or runtime library) code independent of the source language. In order

to handle code pointers, I simply assume their safety as a premise; then, when using the

library with a particular source language type system, instantiate with a syntactic well-

formedness predicate in the form of CpInv and use the facilities of the type system for

checking code pointers to prove the safety of indirect jumps.

By associating typed assembly language programs with the compiled machine code

state, in a purely syntactic manner, a large part of the safety proof has the same struc-

ture as the FPCC Preservation and Progress lemmas discussed in the previous chapter.

However, by inserting the CAP specification language between the type system and the

compiled machine code, I have been able to break the global invariant of the previous

chapter into more local invariants, allowing greater control over integration with external

code. Although I have not demonstrated the interoperation of code from two different

type systems in the current work, the same approach can be used to achieve certified

interoperability between code compiled from different high-level type systems.

In the next chapter, I describe an application of this approach to a more realistic type

system – one that uses regions and capabilities to manage memory allocation and deallo-

cation.

96

Chapter 5

A Certified Memory-Management

Framework

Most, if not all, software systems need to provide facilities for memory reuse. In the pre-

vious chapters, we have seen languages which only support allocation of memory. Since

the ideal machine I am working with has an infinite memory, this does not cause any

problems. However, in real machines, the amount of memory is finite and there must be

mechanisms to allocate areas of memory for use in a computation, and then free them for

reuse after the computation is finished.

One way to categorize memory management schemes is into implicit and explicit

frameworks. The latter would fit well with the languages I have presented in the earlier

chapters and usually consists of having a runtime “garbage collector.” In such a frame-

work, the programmer only worries about allocating new memory. Whenever a request

is made for a new object in memory, the runtime system checks to see if there is enough

memory to satisfy the request. If there is not enough memory left, then the garbage col-

lector looks through all the previously allocated objects to determine which of them are

“garbage” – that is, unreachable from a set of root pointers (usually the registers). The

collector then automatically frees the space being consumed by the unreachable objects

and tries again to satisfy the request for a new object. This collection does not need to

97

take place only when an allocation request is made, and there are a number of strategies

of when to run the collector [91] and how to manage used and free memory areas [92].

Adding a garbage collector to the XTAL language in the previous chapter, for instance,

would require that an XTAL newpair instruction translate to a sequence of commands that

check if there is enough memory for the new object, and if not then a call to a garbage

collector would be made. Adding this to the XTAL runtime library would then require

certifing the safety of the entire collector. While this is doable (as results by [10] indicate),

it is quite an undertaking and I have chosen to take a simpler first step for this thesis.

An alternative to using implicit memory management schemes is to allow the pro-

grammer explicit control, through language constructs and the runtime system, over the

allocation and deallocation of objects in memory. The C language offers this facility

through “malloc” and “free” system calls. However, the C runtime system is generally

not certified correct and certainly the C language type system does not ensure that these

functions are used properly by programmers. One approach that has been developed to

provide type safe memory management is that of region-based type systems [80, 81, 85].

In this chapter, I adopt a region-based memory management framework for the typed

assembly languages presented in previous chapters. The actual primitives for manag-

ing regions will be provided as an external runtime library, while the type system of the

language, RgnTAL, provides facilities for tracking the use of regions.

The type system I use for RgnTAL is essentially the capability calculus of Walker, et

al. [85]. In the following sections, I will present the syntax and semantics, along with

details of the Coq encoding. I will then discuss the translation from well-typed RgnTAL

programs to certified CAP machine code, which follows the same structure as the dis-

cussion in Section 4.4. I will also give some details about the implementation of one of

the region management primitives, which has been completely certified in Coq. At the

time of writing this thesis, the other main primitive is still in the process of being certified

correct using the proof assistant.

This chapter does not introduce any new features to the theoretical framework devel-

98

oped in the previous two chapters. What it does is demonstrate the technical details of a

complete development using a more realistic example of a typed assembly language and

runtime system.

5.1 Typed Assembly Language with Regions

5.1.1 RgnTAL Syntax

The syntax of my region-based typed assembly language is given in Figure 5.1. Note,

this region-based TAL is not a new contribution, since [75, 85] have already designed

such a system, although its details have not been published. However, as with FTAL,

my contribution is the encoding of this system in a formal logic, along with the proofs of

soundness, and the provision of a certified runtime library implementing the region-based

memory management primitives. In previous works, the region primitives have still been

part of the trusted computing base.

Terms. Beginning from the bottom of Figure 5.1, the abstract machine state of RgnTAL

is made up of a static code memory and a dynamic program state. As in XTAL, the code

memory maps code labels, f, to either code blocks (sequences of instructions) or stubs.

The code types are now a bit more complex, to account for polymorphism and capability

constraints, discussed in more detail below. The code memory does not change for the

entire execution of a program.

The dynamic program state is made up of a data memory, register file, and current

instruction sequence. The data memory is a finite mapping of region names, ν, to heap

regions, where a region is a block of memory in which a collection of individual objects

may be stored. Regions will be created at runtime using a newrgn library function and data

will be allocated within regions using an alloc library function. Furthermore, a freergn

library function will allow regions to be deleted from the data memory (effectively freeing

up space in the data memory for reuse). In this version of the language, I have restricted

the actual data that can be stored in regions (the data heap values) simply to pairs. Data

99

(kinds) κ ::= Type | Rgn | Cap

(constructors) c ::= τ | g | A

(types) τ ::= α | int | g handle | 〈τ
1
× τ

2
〉 at g | ∀[∆](A, Γ) | µα.τ

(regions) g ::= ρ | ν

(capabilities) A ::= ε | ∅ | {g1} | {g+} | A
1
⊕ A

2
| A

(con. contexts) ∆ ::= · | ∆, α :κ | ∆, ε≤A

(register file types) Γ ::= {r0:τ
0
, . . . , r7:τ

7
}

(region types) Υ ::= {l0 :τ
0
, . . . , ln :τ

n
}

(memory types) Ψ ::= {ν0 :Υ0, . . . , νn :Υn}

(labels) l, f ::= 0 | 1 | . . .

(user registers) r ::= r0 | r1 | . . . | r7

(word values) v ::= i | ν.l | f | handle (ν) | v[c] | fold v as τ

(register file) R ::= {r0 7→ v0, . . . , r7 7→ v7}

(data heap values) h ::= (v1, v2)

(heap region) H ::= {l0 7→ h0, . . . , ln 7→ hn}

(data memory) D ::= {ν0 7→ H0, . . . , νn 7→ Hn}

(instructions) ι ::= add rd, rs, rt | addi rd, rs, i | sub rd, rs, rt | subi rd, rs, i

| mov rd, rs | movi rd, i | movf rd, f | ld rd, rs(i)

| st rd(i), rs | bgt rs, rt, f | bgti rs, i, f | tapp r[c]

| fold r[τ] | unfold r

(instr. sequences) I ::= ι; I | jd f | jmp r

(code heap values) h ::= code [∆](A, Γ).I | stub [∆](A, Γ).∅

(code memory) C ::= {f
0
7→ h0, . . . , fn

7→ hn}

(program) P ::= (D, R, I)

Figure 5.1: RgnTAL syntax.

100

is read from, or stored to, regions using the ld and st instructions.

The word values of the language are integers, data heap addresses given by a pair

of a region name and label (ν.l), code labels, region handles, type applications, and fold

annotations for recursive data structures. Region names and handles are distinguished

in order to maintain a phase distinction between compile-time and run-time entities. The

names are important at compile-time for they are used to ensure statically that a given

memory address is safe to load or store from. However, they have no run-time signifi-

cance. On the other hand, region handles are the run-time data structures necessary to

manipulate regions. The handles are used during allocation, to increment the region’s

allocation pointer, and when freeing a region, to return the region memory onto a free list.

(Section 5.3.3 describes the underlying representation of region handles and the library

functions that operate on them.)

Types. At the type level we now have, besides types of kind Type, two other kinds

of constructors – regions and capabilities. The types include type constructor variables,

the basic integer type, the type of region handles, pairs, code types, and recursive types.

Notice that the type of a pair not only gives the type of its two elements but also the

region in which the pair is stored. The code type, which can now be made polymorphic

over types, regions, or capabilities, also specifies a set of region capabilities, A, which

must be satisfied before jumping to the code block. I use the metavariables ρ and ε for

variables of kind Rgn and Cap, respectively, and use the metavariable α for type variables

and constructor variables in general. For convenience, the types, regions, and capabilities

are merged into a single syntactic category of “constructors,” distinguished by kinds.

Type contexts, ∆, keep track of quantified constructor variables as well as bounded

quantification over capability sets. Register file types and heap region types map registers

and labels, respectively, to types; and the data memory type keeps track of all the regions

in memory. The data memory type maps region names to their types.

Capabilities. The real novelty in the region type system is the presence of capabilities.

Capabilities, A, indicate the set of regions that are currently valid to access and also keep

101

track of aliasing information, or more accurately, non-aliasing or uniqueness. For details

of how capabilities are used, I refer the reader to Walker’s thesis [84] or [85].

In short, a set of capabilities contains a collection of valid region names, each one

tagged with one of two multiplicities: {g+} simply indicates the capability to access region

g, while {g1} adds the additional information that g is unique – that is, g is different from

any other regions appearing in a set of capabilities formed using {g1}. The uniqueness of a

region is important for the purpose of freeing (deleting) a region from memory, because it

ensures that there are no other region handles in use that are aliases of the one being freed.

Providing the ability to safely free regions is the main purpose of having capabilities in

the RgnTAL type system. Capabilities can also include variables ε which indicate access

to an unspecified set of regions.

In order to get a feel for the use of capabilities, I summarize here a series of examples

from [85], modified for the context of my particular version of the region type system.

Suppose we have a function that simply needs to access data values stored in some re-

gions. The type of such a code block could be something like:

∀[ρ1, ρ2, ε]({ρ
+
1 } ⊕ {ρ+

2 } ⊕ ε, {r1 : 〈int × int〉 at ρ1, r2 : 〈int × int〉 at ρ2, . . .})

This function is parameterized over two regions (which may or may not be aliased) and

an unspecified set of capabilities. When jumping to this code block, the region variables

ρ1 and ρ2 may be instantiated with the same region name, or with different region names.

Now, if instead the code block needs to free one of the regions, it will require knowl-

edge that the region variable is unique among the entire set of capabilities. If the region

variable is aliased with another in the set of capabilities, the type system would not be

able to prevent an illegal access to data in that region once the aliased region is freed. So,

for example, suppose the function will want to free the region ρ1 after processing its data.

102

The type must then specify uniqueness:

∀[ρ1, ρ2, ε]({ρ
1
1} ⊕ {ρ+

2 } ⊕ ε, {. . .})

In this case, it will not be possible to instantiate ρ1 and ρ2 with the same region name upon

jumping to this code.

Suppose, instead, that the code block creates a new region and allocates data in it before

jumping to its continuation. In that case, the type of the continuation will indicate this:

∀[ε](ε, {. . . , r7 : ∀[ρ]({ρ1} ⊕ ε, {r0 : ρ handle, r1 : 〈int × int〉 at ρ, . . .})})

Here, the continuation in r7 expects the creation of a new, unique region ρ, with the handle

to that region and a pointer to some data allocated in the region in the registers r0 and r1.

Finally, suppose we hold a unique capability {ν1} and a code block f has type:

∀[ρ1, ρ2]({ρ
+
1 } ⊕ {ρ+

2 }, {. . . , r7 : ∀[]({ρ+
1 } ⊕ {ρ+

2 }, . . .)})

Since f again does not care about aliasing between ρ1 and ρ2, we can instantiate both

variables with ν. But what if we want to be able to recapture the uniqueness of the region

variable in the continuation of f so that it can be freed later on? It would be too restrictive

to change the strengthen the capability of the continuation in r7 to just {ρ1
1} because then

f would not be able to call it.

We could try using a capability variable to recover the uniqueness information so that

f is given type:

∀[ρ1, ρ2, ε](ε, {. . . , r7 : ∀[](ε, . . .)})

Now, we could instantiate ε with the unique capability we hold, {ν 1}, and then f would

be able to call its continuation and the continuation would have the unique capability

necessary to free the region. Unfortunately, now f is unable to actually access any data

103

in the regions ρ1 and ρ2 because its own capability ε is completely abstract – there is no

relationship between the region variables and ε. The solution to this problem is to use

bounded quantification to relate ρ1, ρ2, and ε. Using this feature, we can give f the type:

∀[ρ1, ρ2, ε≤{ρ+
1 } ⊕ {ρ+

2 }](ε, {. . . , r7 : ∀[](ε, . . .)})

In this type, we can instantiate ρ1 and ρ2 with ν and ε with {ν1}. This instantiation

works because {ν1} ≤ {ρ+
1 } ⊕ {ρ+

2 } according to the definition of the subcapability

relation. Furthermore, the continuation will possess the unique capability {ν 1} allowing

it to free the region, and the body of f will be able to access data in the region through

either of the handles, ρ1 or ρ2. In general, the bounded quantification allows one to hide

some privileges when jumping to a code block, and then regain those privileges in the

continuation. I have sketched here the intuitive use of regions, capabilities, and bounded

quantification. The precise typing rules for the system will be given later in this chapter,

but again, for complete details the reader is referred to the earlier works on this type

system.

I have included a fuller example of a RgnTAL program to compute pairs of Fibonacci

numbers in Appendix C.

Coq encoding

Figure 5.2 details the definition in the Coq logic of RgnTAL regions and capabilities. Re-

gions are identified with natural numbers (defined inductively), and thus a decidable

equality predicate can be defined for them. I then represent a set of region capabilities as

a function from regions to multiplicities. To model a partial function, I define three multi-

plicities, one to indicate the lack of a capability (noC) and the other two as discussed in the

previous section. I then encode the definition of capabilities in Figure 5.1 as appropriate

function terms. There is, however, one complication. On paper, it is easy to implicitly re-

quire through definitions of equality and other type system rules that unique capabilities

104

(* regions and decidable equality *)

Definition rgn : Set := nat.

Definition beq_rgn : rgn -> rgn -> bool := ...

(* capability multiplicities and decidable equality *)

Inductive accap : Set := noC : accap | uniC : accap | mulC : accap.

Definition beq_accap : accap -> accap -> bool := ...

(* set of capabilities *)

Definition capset := rgn -> accap.

Definition nullcap : capset := fun r => noC.

Definition uniqcap : rgn -> capset

:= fun rk r => if (beq_rgn r rk) then uniC else noC.

Definition multcap : rgn -> capset

:= fun rk r => if (beq_rgn r rk) then mulC else noC.

Definition disjcap : capset -> capset -> Prop :=

fun A1 A2 => forall p, (A1 p = noC) \/ (A2 p = noC).

Definition pluscap : forall (A1 A2:capset), (disjcap A1 A2) -> capset :=

fun A1 A2 D r => if (beq_accap (A1 r) noC) then (A2 r) else

if (beq_accap (A2 r) noC) then (A1 r) else noC.

Definition barcap : capset -> capset

:= fun A r => match (A r) with uniC => mulC | _ => (A r) end.

Figure 5.2: Coq encoding: RgnTAL regions and capabilities

105

are not duplicated. We generally need to avoid the situation of having a union of two ca-

pabilities takes place where each capability is for the same, unique region – {g1} ⊕ {g1}.1

I have found for my purposes that the most convenient way to work this in the Coq en-

coding, in order to keep the proofs simple, is to syntactically enforce that a union of two

capability sets may not mention duplicate regions. Hence the definition of disjcap, which

is used by pluscap to enforce this syntactic restriction. Every union of two capability sets,

A
1
⊕ A

2
, must be provided with a proof that the domains of the two sets A

1
and A

2
are

disjoint.

Notice that in the Coq encoding I have defined capabilities such that the equalities

which must be axiomatized in [85] are directly derivable in the logic. We shall see this in

the section on RgnTAL static semantics.

The encoding of labels, registers, and RgnTAL types is shown is Figure 5.3. Here,

again, labels are identified with natural numbers, and registers are defined as an appropri-

ate inductive definition. In the inductive definition of type constructors (omega), integer,

region handle, and pair types are defined directly. The encoding of code types, however,

deviates somewhat from the presentation in Figure 5.1.2 To begin with, I separate the type

constructors for polymorphism and the code type. The code type constructor (tcode) sim-

ply specifies a capability constraint and the expected type of the register file. I then have a

number of constructors which provide polymorphism over the various kinds of the type

system. Region and capability polymorphism is handled using a form of higher-order ab-

stract syntax (HOAS).3 However, due to constraints on the shape of inductive definitions

in the Coq logic, one cannot define a constructor of the type (omega -> omega) -> omega,

which would be the HOAS encoding of type abstraction. Hence, I have had to use a

first-order encoding (deBruijn indices) of polymorphism over constructors of kind Type.

The deBruijn index encoding of types utilizes a mirror image definition of omega, called
1Again, to avoid lengthening this thesis beyond its scope, I refer the reader to [84, 85] for a discussion of

why this must be avoided.
2The existence of these discrepancies and the lack of adequacy in the encoding is discussed later in Sec-

tion 6.3.
3See Section 6.2.

106

Definition label := nat.

Inductive regt : Set := r0 : regt | r1 : regt | ... | r7 : regt.

Inductive omega : Set :=

| tint : omega (* int *)

| thandle : rgn -> omega (* p handle *)

| tpair : omega -> omega -> rgn -> omega (* t1 x t2 at p *)

| tcode : capset -> (regt -> omega) -> omega (* code A,G *)

| tabsr : (rgn -> omega) -> omega (* \/ p:Rgn. t *)

| tabsc : (capset -> omega) -> omega (* \/ c:Cap. t *)

| tabscb : (capset -> omega) -> capset -> omega (* bounded poly over cap *)

| tabscd : forall (c1 c2:capset), ((disjcap c1 c2) -> omega) -> omega

| tabst : (omegaV 1) -> omega (* \/ t:Type. t’ *)

| trec : (omegaV 1) -> omega (* \mu t:Type. t’ *).

Inductive constr : Set :=

| c_rgn : rgn -> constr

| c_cap : capset -> constr

| c_disj : forall c1 c2, disjcap c1 c2 -> constr

| c_type : omega -> constr.

Definition rftype : Set := regt -> omega.

Definition rgntype : Set := fmap label omega.

Definition memtype : Set := fmap rgn rgntype.

Figure 5.3: Coq encoding: RgnTAL types

107

omegaV, which may have free type variables in the body of type constructors. The encod-

ing keeps track of the maximum number of free type variables using a dependent type.

Hence at the top level of a type abstraction (tabst), only one free type variable may be

introduced, as captured by the definition in Figure 5.3. The details of the deBruijn encod-

ing will be described in Section 6.2. Recursive types (trec) also use the deBruijn index

notation for type variables.

The motivation for having two versions of omega is that during all the proof devel-

opments related to the soundness of RgnTAL and its translation to certified CAP code,

we are always working at the top-level of typing derivations so there are never any free

type variables in the context. Hence, the proofs are much simpler to manage using the

top-level definition of omega defined in Figure 5.3, as opposed to the definition of omegaV

with variables and lift terms described in Section 6.2, where we would continuously have

to eliminate the applicability of those cases.

At the bottom of Figure 5.3 are defined the constructors of the type system (region

names, capabilities, disjunction of capability sets, and types), as well as the register file,

region, and data memory types. fmap is defined as

Definition fmap : Set -> Set -> Set = fun A B => A -> option B

and used to encode partial functions. I have developed a complete library for reasoning

about partial functions using this definition.

Encoding the remainder of RgnTAL syntax is fairly straightforward and is shown in

Figure 5.4. One major difference from the presentation in Figure 5.1 is that there are sep-

arate instructions and word values for handling the different kinds of type application.

Furthermore, having defined the basic form of instruction sequences, iseq, the ciseq def-

inition allows them to be parameterized over a set of constructor variables, corresponding

to the code type in the syntax.

108

Inductive wordval : Set :=

| wi : nat -> wordval (* i *)

| wl : rgn -> label -> wordval (* p.l *)

| wf : label -> wordval (* codeptr(f) *)

| wh : rgn -> wordval (* handle(p) *)

| wappr : wordval -> rgn -> wordval (* v[p] *)

| wappc : wordval -> capset -> wordval (* v[A] *)

| wappcd : forall (c1 c2:capset),

wordval -> (disjcap c1 c2) -> wordval

| wappt : wordval -> omega -> wordval (* v[t] *)

| wfold : wordval -> omega -> wordval (* fold v as t *).

Inductive instr : Set :=

| iadd : regt -> regt -> regt -> instr

| iaddi : regt -> regt -> nat -> instr

| imov : regt -> regt -> instr

| imovi : regt -> nat -> instr

| imovf : regt -> label -> instr

| ild : regt -> regt -> nat -> instr

| ist : regt -> nat -> regt -> instr

| ibgt : regt -> regt -> label -> instr

| ibgti : regt -> nat -> label -> instr

| iappr : regt -> rgn -> instr

| iappc : regt -> capset -> instr

| iappcd : forall c1 c2, regt -> (disjcap c1 c2) -> instr

| iappt : regt -> omega -> instr

| ifold : regt -> omega -> instr

| iunfold : regt -> instr.

Inductive iseq : Set :=

| icons : instr -> iseq -> iseq

| ijd : label -> iseq

| ijmp : regt -> iseq.

Inductive ciseq : Set :=

| cibase : iseq -> ciseq

| ciabsr : (rgn -> ciseq) -> ciseq

| ciabsc : (capset -> ciseq) -> ciseq

| ciabsd : forall c1 c2, ((c1 |-| c2) -> ciseq) -> ciseq

| ciabst : (omega -> ciseq) -> ciseq.

Inductive codeval : Set :=

| cvcode : omega -> ciseq -> codeval

| cvstub : omega -> codeval.

Inductive heapval : Set :=

| hvpair : wordval -> wordval -> heapval.

Definition heap := fmap label heapval. (* heap regions *)

Definition datamem := fmap rgn heap.

Definition regfile := regt -> wordval.

Definition codemem := fmap label codeval.

Definition progstate := datamem * regfile * iseq.

Figure 5.4: Coq encoding: RgnTAL abstract machine

109

C ` (D, R, I) 7−→ P where
if I = then P =

add rd, rs, rt; I
′ (D, R{rd 7→ R(rt) + R(rs)}, I

′)
addi rd, rs, i; I

′ (D, R{rd 7→ R(rs) + i}, I ′)
sub rd, rs, rt; I

′ (D, R{rd 7→ R(rt) − R(rs)}, I
′)

subi rd, rs, i; I
′ (D, R{rd 7→ R(rs) − i}, I ′)

mov rd, rs; I
′ (D, R{rd 7→ R(rs)}, I

′)
movi rd, i; I

′ (D, R{rd 7→ i}, I ′)
movf rd, f; I

′ (D, R{rd 7→ f}, I ′)
ld rd, rs(i); I

′ (D, R{rd 7→ vi}, I
′) where R(rs) = ν.l, i ∈ {0, 1},

and D(R(rs)) = (v0, v1)
st rd(i), rs; I

′ (D{R(rs) + i 7→ h′}, R, I ′) where R(rd) = ν.l, D(R(rd)) = (v0, v1),
and h′ = (R(rs), v1) if i = 0 or h′ = (v0, R(rs)) if i = 1

bgt rs, rt, f; I
′ (D, R, I ′) when R(rs) ≤ R(rt); and

(D, R, C(f)) when R(rs) > R(rt)
bgti rs, i, f; I

′ (D, R, I ′) when R(rs) ≤ i; and
(D, R, C(f)) when R(rs) > i

tapp rd[c]; I
′ (D, R{rd 7→ R(rd)[c]}, I

′)
fold rd[τ]; I

′ (D, R{rd 7→ fold R(rd) as τ}, I ′)
unfold rd; I

′ (D, R{rd 7→ v}, I ′) where R(rd) = fold v as τ
jd f (D, R, I ′) where C(f) = code [∆](A, Γ).I ′

jmp r (D, R, I ′) where C(R(r)) = code [∆](A, Γ).I ′

Figure 5.5: Operational semantics of RgnTAL.

5.1.2 Dynamic Semantics

The operational semantics of RgnTAL is defined in Figure 5.5. There is very little differ-

ence from FTAL or XTAL semantics of previous chapters. Note that I use the notation

D(ν.l) as an abbreviation for address lookup D(ν)(l). Because the region management

primitives for allocating and freeing regions will be provided as external library func-

tions, the base instruction set and dynamics semantics of RgnTAL is quite simple.

Coq encoding

The encoding of RgnTAL operational semantics is completely straightforward. For each

row of Figure 5.5, there is a constructor of the inductive definition:

110

Judgment Meaning
∆ ` c

1
= c

2
: κ constructor equality

∆ ` A
1
≤ A

2
subcapability relation

C; Ψ ` v : τ well-formed word value
C; Ψ ` h at ν : τ well-formed data heap value in region
C; Ψ ` H at ν : Υ well-formed heap region
C ` D : Ψ well-formed data memory
C; Ψ ` R : Γ well-formed register file

C; ∆; A; Γ ` I well-formed instruction sequence
C ` h well-formed code heap value
` C well-formed code memory

Ψ ` A sat memory type–capability satisfiability
C; Ψ; A; Γ ` (D, R) well-formed program state
C ` (D, R, I) well-formed program

Figure 5.6: Static judgments of RgnTAL.

Inductive rt_eval : codemem -> progstate -> progstate -> Prop :=

| ev_iadd

: forall CM DM R IS rd rs rt s t,

let i:=(iadd rd rs rt) in

let R’:=(rf_upd R rd (wi (plus s t))) in

(R rs)=(wi s) ->

(R rt)=(wi t) ->

(rt_eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ...

5.1.3 Static Semantics

As in previous chapters, the static semantics of RgnTAL is defined by a series of typ-

ing judgments, summarized in Figure 5.6. Since I am encoding the definition of Rgn-

TAL within the Coq logic, I delegate the judgment of constructor equality to the built-in

equality of the logic. However, since I use a HOAS-inspired encoding for some of the

type constructors and partial functions for the capability sets (see definitions of capset in

Figure 5.2 and omega in Figure 5.3), I must also provide for an extensional definition of

equality on those constructors. For instance,

111

A
1
(g) = A

2
(g), for all g

∆ ` A
1

= A
2

: Cap

Definition eqcap (A1 A2:capset) : Prop := forall g, (A1 g)=(A2 g).

τ
1

= τ
1

∆ ` τ
1

= τ
2

: Type

∆ ` A
1

= A
2

: Cap ∆ ` Γ1(r) = Γ2(r) : Type, for all r

∆ ` ∀[·](A
1
,Γ1) = ∀[·](A

2
,Γ2) : Type

· · ·

Inductive eqtype : omega -> omega -> Prop :=

| eqrefl : forall t1, eqtype t1 t1

| eqcode : forall A1 A2 G1 G2,

eqcap A1 A2 ->

(forall r, eqtype (G1 r) (G2 r)) ->

eqtype (tcode A1 G1) (tcode A2 G2)
...

The definition of eqtype contains more constructors which handle the various cases

of abstraction over constructors. With the above definitions of equality and my encoding

of capability sets, the various equality rules that are axiomatized in Walker’s presenta-

tion [85] are derivable in my encoding. These rules are listed in Figure 5.7. Briefly, the

equality rules allow one to rearrange the structure of a capability set and to duplicate ca-

pabilities of multiplicity +. We use these rearrangements within typing rules for jumping

to a code block in order to match the current capability with the specification of the code

block. Another necessary feature is the ability to lift unique capabilities ({g1}) to dupli-

catable ones ({g+}). The former should provide all the privileges of the latter, although

they are not the same. Thus, the region type system specifies a subtyping relation which

allows uniqueness information to be “forgotten.” In my Coq encoding, I define subtyping

on multiplicities and use that to define the subcapability relation:

` 1 ≤ 1 ` + ≤ + ` 1 ≤ +

Inductive subaccap : accap -> accap -> Prop :=

| subaccap_refl : forall c, subaccap c c

| subaccap_mult : subaccap uniC mulC.

` A
1
(g) ≤ A

2
(g), for all g

∆ ` A
1
≤ A

2

112

∆ ` c : κ

∆ ` c = c : κ
(EQ-REFLEX)

∆ ` c
2

= c
1

: κ

∆ ` c
1

= c
2

: κ
(EQ-SYMM)

∆ ` c
1

= c
2

: κ ∆ ` c
2

= c
3

: κ

∆ ` c
1

= c
3

: κ
(EQ-TRANS)

∆ ` A
1

= A′
1

: Cap ∆ ` A
2

= A′
2

: Cap

∆ ` A
1
⊕ A

2
= A′

1
⊕ A′

2
: Cap

(EQ-CONGR-PLUS)

∆ ` A = A′ : Cap

∆ ` A = A′ : Cap
(EQ-CONGR-BAR)

∆ ` A : Cap

∆ ` ∅ ⊕ A = A : Cap
(EQ-∅)

∆ ` A
1

: Cap ∆ ` A
2

: Cap

∆ ` A
1
⊕ A

2
= A

2
⊕ A

1
: Cap

(EQ-COMM)

∆ ` A
i
: Cap, for 1 ≤ i ≤ 3

∆ ` (A
1
⊕ A

2
) ⊕ A

3
= A

1
⊕ (A

2
⊕ A

3
) : Cap

(EQ-ASSOC)

∆ ` A : Cap

∆ ` A = A⊕ A : Cap
(EQ-DUP)

∆ ` ∅ = ∅ : Cap
(EQ-BAR-∅)

∆ ` g : Rgn

∆ ` {g1} = {g+} : Cap
(EQ-FLAG)

∆ ` A : Cap

∆ ` A = A : Cap
(EQ-BAR-IDEM)

∆ ` A
1

: Cap ∆ ` A
2

: Cap

∆ ` A
1
⊕ A

2
= A

1
⊕ A

2
: Cap

(EQ-DISTRIB)

Figure 5.7: RgnTAL static semantics: equality (derivable rules).

113

Definition subcap : capset -> capset -> Prop

:= fun A1 A2 => forall p, subaccap (A1 p) (A2 p).

Once again, the set of subcapability rules that are axiomatized in [85, Fig. 5] can be

easily derived from my encoding.

The next five judgment forms in Figure 5.6 cover the rules for typechecking data val-

ues and memory. The rules for these are given in Figure 5.8. The rule for integers is

trivial, and data pointers are given the type assigned to the address in memory. (V-PAIR)

allows pointers to be given a type even after their region has been deallocated. Although

such dangling pointers can exist in a program, the type system will not allow them to be

dereferenced. The rule for region handles ties together the dynamic (run-time) and static

(compile-time) entities. Code pointers are given their type as assigned in the code mem-

ory specification. The rules for constructor application and folding a recursive type are

standard, with (V-SUB) taking into account the bounded quantification over capabilities.

The data heap only contains pairs and thus we only have one rule for heap values. Re-

gions, the data memory, and the register file all make sure that their respective elements

are well-typed.

The remaining RgnTAL typing rules are given in Figure 5.9. Many of the instruction

typing rules are the same as our previous flavors of TAL, such as the (I-MOV) rule. One

difference is that the store and load instructions must make sure that there exists a capa-

bility to read or write from a tuple in memory. Also the rules for jumps will make sure

that the capability specification matches the current capability set, as well as checking that

the register file specifications are compatible. Finally, RgnTAL has rules for constructor

application. The (I-APPCB) handles the case of bounded quantification over capabilities.

The typing rules for instructions are used to type code values in the code heap. As before,

we simply assume at this stage that all stubs are well-typed.

The top-level rules bring together the well-formedness of the code memory, data mem-

ory, and register file, along with a judgment that a capability A satisfies the data memory

type Ψ. The (SAT) rule ensures that the capabilities being used to type check memory

114

C; Ψ ` v : τ

C; Ψ ` i : int
(V-INT) Ψ(ν.l) = τ

C; Ψ ` ν.l : τ
(V-ADDR)

ν /∈ Dom(Ψ)

C; Ψ ` ν.l : 〈τ
1
× τ

2
〉 at ν

(V-PAIR)

C; Ψ ` handle (ν) : ν handle
(V-HNDL) typeof(C(f)) = τ

C; Ψ ` f : τ
(V-CODE)

C; Ψ ` v : ∀[∆, α :κ](A, Γ) ` c : κ

C; Ψ ` v[c] : ∀[∆](A, Γ)[c/α]
(V-TYPE)

C; Ψ ` v : ∀[∆, ε≤A′′](A′, Γ) ∆ ` A ≤ A′′

C; Ψ ` v[A] : ∀[∆](A′, Γ)[A/α]
(V-SUB)

C; Ψ ` v : τ [µα.τ/α]

C; Ψ ` fold v asµα.τ : µα.τ
(V-FOLD)

C; Ψ ` h at ν : τ
C; Ψ ` v1 : τ

1
C; Ψ ` v2 : τ

2

C; Ψ ` (v1, v2) at ν : 〈τ
1
× τ

2
〉 at ν

(H-PAIR)

C; Ψ ` H at ν : Υ

Dom(H) = Dom(Υ)
C; Ψ ` H(li) at ν : Υ(li) for all li ∈ Dom(Υ)

C; Ψ ` H at ν : Υ
(REGION)

C ` D : Ψ

Dom(D) = Dom(Ψ) ` Ψ
C; Ψ ` D(νi) at νi : Ψ(νi) for all νi ∈ Dom(Ψ)

C ` D : Ψ
(DMEM)

C; Ψ ` R : Γ
C; Ψ ` R(r) : Γ(r) for all r

C; Ψ ` R : Γ
(REGFILE)

Figure 5.8: RgnTAL static semantics: Data values, memory, and register file.

115

C; ∆; A; Γ ` I

C; ∆; A; Γ{rd 7→ Γ(rs)} ` I

C; ∆; A; Γ ` mov rd, rs; I
(I-MOV)

Γ(rd) = 〈τ
1
× τ

2
〉 at g Γ(rs) = τ

i

∆ ` A ≤ A′ ⊕ {g+} C; ∆; A; Γ ` I
i ∈ {0, 1}

C; ∆; A; Γ ` st rd(i), rs; I
(I-ST)

Γ(r) = ∀[∆, ε≤A′′](A′, Γ′) ∆ ` A
0
≤ A′′ C; ∆; A; Γ{r : ∀[∆](A′, Γ′)[A

0
/ε]} ` I

C; ∆; A; Γ ` tapp r[A
0
]; I

(I-APPCB)

Γ(r) = ∀[](A′, Γ′) ∆ ` Γ = Γ′ ∆ ` A ≤ A′

C; ∆; A; Γ ` jmp r
(I-JMP)

C ` h
C; ∆; A; Γ ` I

C ` code [∆](A, Γ).I
(C-CODE) C ` stub [∆](A, Γ).∅

(C-STUB)

` C
C ` C(f) for all f ∈ Dom(C)

` C
(CMEM)

Ψ ` A sat C; Ψ; A; Γ ` (D, R) C ` (D, R, I)

∆ ` A = {ν0
ϕ0} ⊕ . . . ⊕ {νn

ϕn} : Cap ν0, . . . , ν1 distinct
{ν0 :Υ0, . . . , νn :Υn} ` A sat

(SAT)

` C C ` D : Ψ C; Ψ ` R : Γ Ψ ` A sat

C; Ψ; A; Γ ` (D, R)
(STATE)

C; Ψ; A; Γ ` (D, R) C; ·; A; Γ ` I

C ` (D, R, I)
(PROG)

Figure 5.9: RgnTAL static semantics: Instructions (selected), code, and top-level rules.

116

accesses accurately reflect the regions that exist in memory.

For each judgment form, the rules in Figures 5.8 and 5.9 are encoded in the Coq logic

using inductively defined predicates. Thus we have, corresponding to the judgments in

Figure 5.6:

wf_wordval : codemem -> memtype -> wordval -> omega -> Prop

wf_heapval : codemem -> memtype -> heapval -> rgn -> omega -> Prop

wf_heap : codemem -> memtype -> heap -> rgn -> rgntype -> Prop

wf_datamem : codemem -> datamem -> memtype -> Prop

wf_regfile : codemem -> memtype -> regfile -> rftype -> Prop

wf_iseq : codemem -> capset -> rftype -> iseq -> Prop

wf_codeval : codemem -> codeval -> Prop

wf_codemem : codemem -> Prop

sat_cap_memtype : memtype -> capset -> Prop

wf_state : codemem -> memtype -> capset -> rftype -> datamem -> regfile -> Prop

wf_program : codemem -> progstate -> Prop

Notice that constructor contexts are implicit (in the typing judgment for instruction se-

quences) because I use a HOAS-style encoding for constructor variables other than types;

thus RgnTAL variables are represented using metavariables of the logic. For types, as

mentioned earlier and described in Section 6.2, I use a lifted version of the type encoding

that utilizes deBruijn indices to track type variables.

5.2 Soundness

As for XTAL, I cannot prove a complete soundness theorem for the RgnTAL type system

with the presence of stub values in the code heap. However, for each individual instruc-

tion, I prove the standard progress and preservation lemmas. That is, given a well-typed

RgnTAL program, it is possible to execute the current instruction, resulting in another

well-typed program state. For example, the Coq statements of these lemmas in the case

of a simple move instruction are:

If C; Ψ;A; Γ ` (D, R) and C;∆;A; Γ ` mov rd, rs; I , then there exists a program P such that

C ` (D, R, I) 7−→ P .

117

Lemma progress_imov

: forall CM M R MT A G rd rs Is,

let curIs := (icons (imov rd rs) Is) in

wf_state CM MT A G M R ->

wf_iseq CM A G curIs ->

exists P, rt_eval CM (M, R, curIs) P.

If C; Ψ;A; Γ ` (D, R), C;∆;A; Γ ` mov rd, rs; I , and C ` (D, R, I) 7−→ (D′, R′, I ′), then

there exists some data memory type, Ψ ′, such that C; Ψ′;A; Γ{rd : Γ(rs)} ` (D′, R′).

Lemma preserv_imov

: forall CM M R MT A G rd rs Is M’ R’ Is’,

let curIs := (icons (imov rd rs) Is) in

let P := (M’, R’, Is’) in

wf_state CM MT A G M R ->

wf_iseq CM A G curIs ->

rt_eval CM (M, R, curIs) P ->

exists MT’,

wf_state CM MT’ A (rft_upd G rd (G rs)) M’ R’.

I have generalized the statements of these lemmas so that they have about the same

form for every instruction. In the case of mov above, we could actually prove the preserva-

tion lemma using Ψ′ = Ψ. The instructions that deal with memory are more complicated

to prove, as are the instructions involving type application, but overall the formalized

proofs in Coq are essentially the same as the soundness proofs presented in [85], after

taking into account differences in my Coq encoding.

5.3 Compilation and Runtime Library

5.3.1 Specifying the Translation of Programs to Machine States

The compilation of well-typed RgnTAL programs to CAP with safety proofs is somewhat

more complicated that the compilation of XTAL in the previous chapter, mainly because

of the reasoning about memory that is needed. In order to keep the memory reasoning

tractable, I have encoded the primitives of separation logic [67] in Coq, along with a li-

brary of derived lemmas. Some of the basic operators that I use are listed in the following

table. (In this table, “memory” refers to a partial function mapping integer addresses to

integer words. In the Coq encoding, separation logic assertions have the type mempred.)

118

Sep. log. primitive My Coq encoding Describes

emp emptymp an empty memory area

e 7→ e′ e |-> e’ memory containing one cell at address e

which contains e’

e 7→ e |-> ? memory containing one cell at address e

which contains some unspecified value

p * q p && q memory that can be split into two disjoint

parts in which p and q hold respectively

∃a : b.p ‘ex fun a:b => p existential quantification

To compile RgnTAL programs into a CAP machine state, I divide the machine memory

into three parts: (1) an area for external code, beginning at address ec_min and of size

ec_size, where the implementation of the external code (runtime library functions) will

be, (2) an area for the compiled program code, at address cm_min and of size cm_size, and

(3) an area for program data, at address dm_min and of size dm_size, which may expand

dynamically. In the next few subsections, I describe the contents of each of these areas.

Data Memory Area

The data area stores the translated RgnTAL data memory containing regions. It will keep

track of region allocation using a simple memory management scheme involving a free

list of regions. Within each region, allocation of data (RgnTAL pairs) will be handled by

a simple linear allocation scheme that keeps track of the current allocation pointer within

the region. Each RgnTAL region corresponds to a block of memory with a three word

header. In C-like syntax, a region block is defined as:

119

Definition mempred := memarea -> Prop.

Fixpoint ptrtoanylist (a sz:word) struct sz : mempred :=

match sz with | 0 => emptymp

| (S n) => ((a |-> ?) && (ptrtoanylist (a+1) n))

end.

Definition freeblock (a sz nxt:word) : mempred :=

‘(a <> nilptr) &

((a |-> sz) && (((a+1) |-> ?) && (((a+2) |-> nxt) && (ptrtoanylist (a+3) sz)))).

Definition newblock (a sz:word) : mempred :=

‘(a <> nilptr) &

((a |-> sz) && (((a+1) |-> 0) && (((a+2) |-> ?) && (ptrtoanylist (a+3) sz)))).

Fixpoint fblist (n a:word) struct n : mempred :=

match n with | 0 => ‘(a=nilptr) & emptymp

| (S n’) => ‘(a<>nilptr)

& (‘ex fun sz => ‘ex fun a’ =>

((freeblock a sz a’) && (fblist n’ a’)))

end.

Definition freelist (a:word) : mempred := ‘ex fun n => (fblist n a).

Figure 5.10: Coq definitions of region blocks and free list.

struct rgnblock {

int size; // size of the block, excluding header

int ap; // allocation pointer within the region

rgnblock* next; // next region in the free list

int* data; // array of [size] integers containing data values (the

// translated RgnTAL heap values)

}

Empty space in the data memory and deallocated regions are kept track of in a free list

structure using the next pointer of the region block. The Coq encoding of the rgnblock

data structure and free list is given in Figure 5.10.

The ptrtoanylist predicate describes a block of memory pointed to by address a and

of size sz which contains arbitrary data values. This definition is used by freeblock,

which adds on the header fields for such a free region. The newblock predicate is what is

returned upon allocation of a new region; notice that its next field is unspecified and its

allocation pointer field is set to 0. fblist describes a linked list of n free blocks, and by

existential quantification over the number of free blocks we obtain the definition of the

120

freelist.

The free list will describe the unallocated portions of data memory. In order to de-

scribe the allocated portion of data memory, I first define, in Figure 5.11, the translation

from RgnTAL word values to machine words (integers). Then tr_heapvalwill translate a

RgnTAL heap value (pair) and its location in the RgnTAL data memory into a separation

logic assertion. The tr_dataptr function maps a RgnTAL pointer into the corresponding

machine address and will be constructed appropriately during the compilation process

by the compiler. tr_dataptr is the equivalent of the AD function for XTAL compilation

in Section 4.4.2. The next function, tr_hvs, translates a RgnTAL region (H:heap) contain-

ing a number of heap values (pairs) into a separation logic assertion describing how the

region will be laid out in the machine memory. Since I model the RgnTAL heap regions

as functions from integer labels to heap values, I make sure the functions are a finite map-

ping by insuring that they have a greatest label in their domain (Lim). Then I recurse from

the value of Lim down to zero to define a terminating function which will process all the

heap values in the range of H. Finally, the definition of tr_heap at the bottom of the figure

details the complete translation from a RgnTAL region to the actual rgnblock data struc-

ture defined earlier. It uses another layout function, RLyt, which maps RgnTAL region

names to addresses in memory. The three-word header information is laid out, as well

as checks to ensure that the allocated and unallocated amount of data add up to the total

region size. The allocation pointer is set to be exactly the number of allocated words in

the region.

The compilation of RgnTAL instructions to CAP machine commands is fairly simple.

The first two definitions in Figure 5.12 illustrate this. A RgnTAL instruction sequence cor-

responds to a list of CAP commands as defined by tr_iseq. This definition is then used

by tr_codeval to translate RgnTAL code values to a sequence of words (encoded in-

structions), which are appropriately laid out in memory by tr_codemem. The coversfnat

predicate ensures that the memory area described by the tr_codemem assertion starts at

address cm_min and extends for cm_size words.

121

Inductive tr_wordval : wordval -> word -> Prop :=

| tr_wi : forall n, tr_wordval (wi n) n (* Integer *)

| tr_wl : forall p l w,

tr_dataptr p l = Some w ->

tr_wordval (wl p l) w (* RgnTAL pointer to address w *)

| tr_wlnop : forall p l w,

notindomf DMLyt p ->

tr_wordval (wl p l) w (* Dangling pointer *)

| tr_wf : forall f w,

fmaplook CMLyt f w ->

tr_wordval (wf f) w (* Code pointer *)

| tr_wappt : forall v t w,

tr_wordval v w ->

tr_wordval (wappt v t) w (* Type application (type info

is erased) *)

| ... (* other cases of constructor application similar *)

Definition tr_heapval (p:rgn) (l:nat) (a:word) (hv:heapval) : mempred :=

match hv with [v0,v1] => ‘ex fun w0 => ‘ex fun w1 =>

‘(tr_dataptr p l = (Some a)) & ‘(tr_wordval v0 w0) &

‘(tr_wordval v1 w1) & ((a |-> w0) && ((a+1) |-> w1))

end.

Fixpoint tr_hvs (p:rgn) (a:word) (Lim:word) (H:heap) struct Lim : mempred :=

match Lim with | 0 => (‘(nulldomf H) & (@emptyfp _ _))

| (S m) => match (H Lim) with

| None => tr_hvs p a m H

| Some hv => ((tr_heapval p Lim a hv) &&

(tr_hvs p (2+a) m (fmapdelN _ H Lim)))

end

end.

Definition tr_heap : rgn -> heap -> mempred :=

fun p H => ‘ex fun a => ‘ex fun hplim => ‘ex fun rsize => ‘ex fun diff =>

‘(a <> nilptr) & (* region address cannot be null *)

‘(fmaplook RLyt p a) & (* map region name to address *)

‘(@limitf heapval H hplim) & (* region has finite domain *)

‘((hvlist_size hplim H)+diff = rsize) & (* allocated and unallocated

space in the region

add up to the size *)

(((a |-> rsize) && (* first header word: size *)

(((a+1) |-> (hvlist_size hplim H)) && (* header word: alloc ptr *)

((a+2) |-> ?))) && (* header word: next ptr *)

((tr_hvs p (a+3) hplim H) && (* actual region data *)

(ptrtoanylist (a+3+(hvlist_size hplim H)) diff))). (* unused space *)

Figure 5.11: Coq encoding of RgnTAL heap values and region translation.

122

Inductive tr_instr : cmdlist -> instr -> cmdlist -> Prop :=

| tr_iadd : forall Cs rd rs rt,

tr_instr Cs (iadd rd rs rt) (add rd rs rt :: Cs)

| tr_iaddi : forall Cs rd rs t,

tr_instr Cs (iaddi rd rs t) (addi rd rs t :: Cs)

| ...

Inductive tr_iseq : iseq -> cmdlist -> Prop :=

| tr_icons : forall i Is cs Cs,

tr_iseq Is Cs -> tr_instr Cs i cs -> tr_iseq (icons i Is) cs

| tr_ijd : forall f w, fmaplook CMLyt f w -> tr_iseq (ijd f) (jd w :: nil)

| tr_ijmp : forall r, tr_iseq (ijmp r) (jmp r :: nil).

Inductive tr_codeval : codeval -> wordlist -> Prop :=

| tr_cvcode : forall G Is Cs Ws,

tr_ciseq Is Cs -> Cs = map Dc Ws -> tr_codeval (cvcode G Is) Ws

| tr_cvstub : forall G, tr_codeval (cvstub G) nil.

Definition tr_codemem (CM:codemem) : mempred :=

fun M => (coversfnat _ M cm_min (cm_min+cm_size)) /\

(forall f cv, fmaplook CM f cv ->

exists Ws, exists a, fmaplook CMLyt f a /\ tr_codeval cv Ws

/\ ((wordsinmem Ws a) && truemp) M).

Figure 5.12: Coq encoding of RgnTAL code values and code memory translation.

Finally, the top-level translation relations are specified by the definitions in Figure 5.13.

tr_datamem brings together the translation of all the regions in the RgnTAL data memory

(using an auxiliary definition, tr_datamem_aux, not shown) with the freelist specifica-

tion to form a separation logic assertion describing all of the data area of machine memory

(which starts at address dm_min and extends to size dm_size). Also, the first address in

the data area points to the size of the entire data area, and the second word is a pointer

to the freelist structure. The next two definitions handle the layout of external code

in the appropriate area of the machine memory. tr_memstate_aux and tr_memstate de-

scribe the combined layout of the RgnTAL code and data memories. Notice also that they

specify that address 0 in the machine memory is not used, and that addresses 1 and 2 are

pointers to the beginning of code and data memory areas. With the register file and pro-

gram counter translation, I obtain a complete translation predicate (tr_program) relating

a RgnTAL program (codemem and progstate) to a Coq machine state (state).

123

Definition tr_datamem (DM:datamem) dm_min dm_size : mempred :=

‘ex fun dmlim =>

‘ex fun fp => (* free list pointer *)

(fun M => coversfnat _ M dm_min (dm_min+dm_size)) &

‘(limitf _ DM dmlim) &

((dm_min |-> dm_size) &&

(((dm_min+1) |-> fp) && ((tr_datamem_aux dmlim DM) && (freelist fp)))).

Definition extcode_in_ec : Prop :=

(forall a Cs Pcs, ExtCode a = someT (Cs,*Pcs) ->

(ec_min <= a /\ a+(length Cs) < ec_min+ec_size)).

Definition tr_extcode : codemem -> mem -> Prop :=

fun CM MM => exists M,

(extcode_in_ec) /\

(coversfnat _ M ec_min (ec_min+ec_size)) /\

(forall f w G Is, fmaplook CMLyt f w -> fmaplook CM f (cvcode G Is)

-> ExtCode w = noneT _) /\

(forall a Cs Pcs, ExtCode a = someT (Cs,*Pcs) -> cmdsinmem Cs a M) /\

(appliesto M MM).

Definition tr_memstate_aux (CM:codemem) (DM:datamem) : mempred :=

‘ex fun dm_min => ‘ex fun dm_size =>

‘(eqdomf _ _ _ CMLyt CM) & ‘(eqdomf _ _ _ DMLyt DM)

& (((0 |-> ?) && ((1 |-> cm_min) && ((2 |-> dm_min))))

&& ((tr_codemem CM) && (tr_datamem DM dm_min dm_size))).

Definition tr_memstate (CM:codemem) (DM:datamem) (MM:mem) : Prop :=

exists M, tr_memstate_aux CM DM M /\ (appliesto M MM).

Definition tr_regfile (Rf:regfile) (R:rfile) : Prop :=

forall r v w, Rf r = v -> R r = w -> tr_wordval v w.

Definition tr_pc (CM:codemem) (Is:iseq) (pc:word) : Prop :=

exists f, exists G’, exists Is’, exists w, exists n,

fmaplook CM f (cvcode G’ Is’) /\

subseqis Is Is’ n /\

fmaplook CMLyt f w /\

pc = n + w.

Inductive tr_program : codemem -> progstate -> state -> Prop :=

| tr_prog :

forall CM DM R Is MM RR pc,

tr_extcode CM MM ->

tr_memstate CM DM MM ->

tr_regfile R RR ->

tr_pc CM Is pc ->

tr_program CM (DM,R,Is) (MM,RR,pc).

Figure 5.13: Coq encoding of RgnTAL memory, register file, and program translation.

124

5.3.2 Safety Policy, Invariants, and Proofs

For the system described in this chapter, I use a slightly more realistic safety policy when

certifying the compiled code. It states that for any memory reads or writes, the address

being accessed must lie within the data area of memory, or else the program counter must

be in the external code area of memory. The reasoning is that RgnTAL code should only

access memory within its data area, while the external code (runtime library functions)

may access memory anywhere but it will have the burden then of proving that any writes

to memory will maintain basic type safety. In Coq syntax,

Definition MySP (St:state) :=

match St with (M,R,pc) =>

let dm_min := (M 2) in

let dm_size := (M dm_min) in

match (curcmd St) with

| ld rd rs n => let a:=(R rs)+n in dm_min < a < (dm_min+dm_size)

\/ (ec_min <= pc < (ec_min+ec_size))

| st rd n rs => let a:=(R rd)+n in dm_min < a < (dm_min+dm_size)

\/ (ec_min <= pc < (ec_min+ec_size))

| _ => True

end

end.

I also specify in Coq the generation of CAP code preconditions from RgnTAL code

types and code memory specification. Thus, corresponding to XTAL’s CpInv (Section 4.4.3),

I define the following for the RgnTAL system:

Definition cpinv (CM:codemem) (T:omega) : pred :=

fun St =>

match St with (MM,RR,pc) =>

exists DLyt, exists RLyt, (* data ptr and region ptr mappings *)

exists DM, exists RF, exists MT, exists Ts, exists A, exists G,

instcodetype T Ts (tcode A G) /\

wf_state CM MT A G DM RF /\

tr_memstate DLyt RLyt CMLyt cm_min cm_size CM DM MM /\

tr_regfile DLyt RLyt CMLyt RF RR

end.

As the invariant CpInv is important to understand the connection between the RgnTAL

type system and CAP predicates, it might be more convenient to view it in typeset form:

125

CpInv(AC , C,∀[∆](A′,Γ′))

= λS.∃AD,AR,D, R,Ψ,~c, A,Γ. ∀[](A′,Γ′)[~c/∆] = ∀[](A,Γ)

∧ C; Ψ;A; Γ ` (D, R)

∧ A ` (C,D) ⇒ S.M

∧ A ` R ⇒ S.R

This version of CpInv is very similar to the one for XTAL. One difference here is an

additional layout function mapping region names to addresses, AR. Another difference is

that RgnTAL code types support polymorphism. Thus, CpInv states that there must exist

some list of constructors,~c (or Ts in the Coq version above), with which the code type can

be instantiated. The conjuncts on the lower three lines are the real essence of CpInv. Again,

they state that CpInv holds on a machine state S if there exists some well-typed RgnTAL

program such that the memory and register file components of that program correspond

to the memory and register file of the machine state according to the translation relations

defined in the previous section.

Given the definition of CpInv, I define the generation of the complete CAP code spec-

ification (CpGen) given an external code library, RgnTAL code memory, and code layout

function, just as in Section 4.4.3. Thus, in Coq I define a predicate that describes the for-

mation of an appropriate CAP code specification:

Definition iscpgen : extcodety -> codelyt -> codemem -> cdspec -> Prop

:= ...

Now, I prove the same sequence of safety theorems as for XTAL (Theorems 4.9, 4.8,

4.7). Among the lemmas that are used to develop these proofs are a set of lemmas, one for

each RgnTAL instruction, that prove the preservation of CpInv over one step of execution.

As a few representative examples,

126

Lemma cpinv_preserv_add :

forall CM A G rd rs rt Is St

(D0 : cpinv CM (tcode A G) St)

(D1 : wf_iseq CM A G (icons (iadd rd rs rt) Is))

(D2 : curcmd St = (add rd rs rt)),

cpinv CM (tcode A (rft_upd G rd tint)) (Step St).

Lemma cpinv_preserv_ld :

forall CM A G rd rs n Is St

(D0 : cpinv CM (tcode A G) St)

(D1 : wf_iseq CM A G (icons (ild rd rs n) Is))

(D2 : curcmd St = (ld rd rs n)),

exists t, exists t1, exists t2, exists g,

(n = 0 /\ t = t1 \/ n = 1 /\ t = t2) /\

G rs = tpair t1 t2 g /\

cpinv CM (tcode A (rft_upd G rd t)) (Step St).

Lemma cpinv_preserv_appr :

forall CM A G r p Is St

(D0 : cpinv CM (tcode A G) St)

(D1 : wf_iseq CM A G (icons (iappr r p) Is))

(D2 : curcmd St = (mov r r)),

exists Fr,

G r = tabsr Fr /\

cpinv CM (tcode A (rft_upd G r (Fr p))) (Step St).

These are directly used to prove the well-formedness of translation from RgnTAL in-

structions to CAP commands:

Lemma rgntal2wfcapcmds :

forall ExtCode CMLyt CT CM Is T Ws Cs

(D0 : iscpgen ExtCode CMLyt CT CM) (* CT = CpGen(..., CM) *)

(D1 : extcode_in_ec ExtCode ec_min ec_size) (* ExtCode is valid *)

(D2 : tr_codeval CMLyt (cvcode T Is) Ws) (* Ac |- Is => Ws *)

(D3 : Cs = map Dc Ws)

(D4 : forall Ts A G, instcodetype T Ts (tcode A G) (* CM; A; G |- Is *)

-> wf_iseq CM A G Is),

WFCapCmds MySP CT (cpinv CM T) Cs.

That is, if a well-typed RgnTAL instruction sequence Is (with code type T) translates to

a list of CAP commands Cs, then the list of commands is well-formed under the CAP code

specification CT (generated from the RgnTAL code memory type CM) and precondition

cpinv CM T.

Well-formedness of the individual compiled instruction sequences leads to well-formedness

of the entire code memory (the extcode_wf premise corresponds to Proof Obligation 4.10

in the XTAL context),

127

Lemma rgntal2wfcapcdspec :

forall ExtCode CMLyt DLyt RLyt CT CM DM R Is MM RR pc

(D0:iscpgen ExtCode CMLyt CT CM)

(D1:wf_program (CM, (DM,R,Is)))

(D2:tr_program ExtCode DLyt RLyt CMLyt CM (DM,R,Is) (MM,RR,pc))

(extcode_wf: forall f Cs P,

ExtCode f = someT (Cs ,* P) ->

forall CT’, iscpgen ExtCode CMLyt CT’ CM -> WFCapCmds MySP CT’ P Cs),

WFCapcdspec MySP MM CT.

which in turns leads to the final safety theorem,

Theorem rgntal2cap :

forall ExtCode CMLyt DLyt RLyt CT CM DM R Is St

(D0:iscpgen ExtCode CMLyt CT CM)

(D1:wf_program (CM, (DM,R,Is)))

(D2:tr_program ExtCode DLyt RLyt CMLyt CM (DM,R,Is) St)

(extcode_wf: forall f Cs P,

ExtCode f = someT (Cs ,* P) ->

forall CT’, iscpgen ExtCode CMLyt CT’ CM -> WFCapCmds MySP CT’ P Cs),

WFCapstate MySP St.

This states that given a well-typed RgnTAL program that translates to a CAP machine

state St, such that the necessary proof obligations are satisfied on external code, and the

code specification is generated properly, we can prove that the CAP machine state is well-

formed for the memory safety policy MySP.

5.3.3 Region-based Memory Management Library

The development in the previous section establishes an assembly language with a region-

based type system but does not provide the primitives for creating and deleting regions,

or for allocating new data values in a region. For that purpose, I design a runtime library

that will link in with RgnTAL code providing the necessary external functions to support

region management.

Figures 5.14 and 5.15 illustrate my implementation of region library in C-like syntax.

The library provides three main functions and has three utility functions that are used by

those. The primary functions of the library are: freergn, which takes a pointer to a region

(rgnblock*) and returns it to the freelist; newrgn, which returns a new region ready to

128

// region data structure

struct rgnblock {

int size; // size of the block, excluding header

int ap; // allocation pointer within the region

rgnblock* next; // next region in the free list

int* data; // array of [size] integers containing data values (the

// translated RgnTAL heap values)

}

// data structure allocated within regions

struct pair {

int fst, snd;

}

const int BASESIZE = 10;

const rgnblock* NULLPTR = 0;

rgnblock* freelist; // assume it is appropriately initialized somehow

int dm_min, dm_size; // same for these (defined in the previous section)

void freergn(rgnblock* p) {

p.next = freelist;

freelist = p;

}

rgnblock* newrgn() {

if (freelist != NULLPTR) {

rgnblock* p = freelist;

freelist = freelist.next;

return p;

} else {

rgnblock* p = moremem(BASESIZE);

return p;

}

}

pair* alloc(int v1, int v2, rgnblock* p) {

if (p.ap > p.size) { // check if there is space in the region

rgnblock* p’ = growrgn(p, p.size + p.size);

return alloc(v1, v2, p’);

} else {

pair* s = p + p.ap;

p.ap = p.ap + 2;

s.fst = v1;

s.snd = v2;

return s;

}

}

Figure 5.14: Region library functions (C-like implementation)

129

rgnblock* moremem(int nsize) {

rgnblock* p = dm_min + dm_size; // end of the data memory area

p.size = nsize;

p.ap = 0;

p.next = NULLPTR;

dm_size += nsize + 3; // increase the limit of data area

return p;

}

rgnblock* growrgn(rgnblock* p, int nsize) {

rgnblock* p’ = moremem(nsize);

p’.ap = p.ap;

copyrgn(p, p’, 0);

freergn(p);

return p’;

}

void copyrgn(rgnblock* p, rgnblock* p’, int elem) {

if (elem >= p.ap) return;

p’.data[elem] = p.data[elem];

copyrgn(p, p’, elem+1);

}

Figure 5.15: Region library utility functions (C-like implementation)

be used, taking it from the freelist if it is non-empty and otherwise allocating space for

the region by adjusting the size of the data area of memory; and alloc, which creates a

new pair of data in a region, again resizing the region as necessary if there is not enough

space.

Notice that these functions are (albeit simplistic) realistic, efficient C implementations

of a library. They do not introduce any extra checks for safety. The RgnTAL type system

will guarantee proper use of the API; for example, that free’d region pointers are not

passed to the alloc function. At the time of this writing, I am in the process of mech-

anizing the proofs of safety for this library. I will discuss in this section, therefore, only

one of the functions, freergn, for which the formal Coq proofs have been almost entirely

completed. The process of certifying the other functions in the library is similar to the

description for freergn below although, of course, the details of the specifications and

interface types will be different.

130

Certifying freergn in CAP

To begin with, I manually translate the freergn code in Figure 5.14 into a CAP code block.

The result is the following command list:

Definition freergn_cmds : cmdlist :=

(movi r8 2) :: (* address 2 points to dm_min *)

(ld r8 r8 0) :: (* r8 := dm_min *)

(ld r9 r8 1) :: (* r9 := freelist *)

(st r0 2 r9) :: (* p.next := freelist *)

(st r8 1 r0) :: (* freelist := p *)

(jmp r7).

In standard Hoare-triple notation, we would specify pre- and post-conditions for this

set of commands as follows:

{ Pre } freergn_cmds { Post };

However, because CAP programs are written in continuation-passing style, and also

because it is difficult in the simple Hoare logic system to handle the jump to a code pointer

(the last command in the sequence), the actual process of certifying this code in CAP is a

bit more convoluted. Specifically, corresponding to assertions of the Hoare-triple above, I

specify a predicate on what constraints the CAP precondition of the freergn_cmds block

should satisfy:

freergn req(Φ, Pfree) = λS.Pfree(S) → Pre(S) ∧

∃Q.(Φ(S.R(r7)) = Q ∧ (∀S
′ .Post(S′) → Q(S′)))

I will prove the safety of freergn_cmds using a quantified precondition, P free, which

must imply a concrete precondition, Pre, and which must also imply that there exists a

return code pointer in r7 the precondition of which (Q) is implied by Post. The predi-

cates Pre and Post are used to reason about the changes in memory and register file that

are effected by the series of commands up till the jump. Such reasoning is pure first order

reasoning, as we will see, and I use separation logic to define these two predicates and rea-

son the intermediate steps. The higher-order quantification over Pfree and the definition

131

of freergn_req then allows reasoning about the safety of the final jump while maintain-

ing modularity of the library’s safety proof (because it is not instantiated with a predicate

particular to one type system).

Let us now examine the definitions of Pre and Post. Pre is defined in Coq as:

fun St => match St with ((MM,RR),pc) =>

ec_min <= pc /\ (pc + (length freergn_cmds)) < ec_min+ec_size (* 1 *)

/\

exists M, exists PmemA, exists PmemB,

exists dmmin, exists dmsize, exists fp, exists rsize, exists nxt,

(appliesto M MM) /\ (* 2 *)

(PmemA && (* 3 *)

(2 |-> dmmin)) && (* 4 *)

((fun Md => (forall a, indomf Md a -> ~(iscodearea CT a 1))) & (* 5 *)

(fun Md => (coversfnat _ Md dmmin (dmmin+dmsize))) & (* 6 *)

(PmemB && (freeblock (RR r0) rsize nxt) (* 7 *)

&& (dmmin |-> dmsize) (* 8 *)

&& ((dmmin+1) |-> fp) (* 9 *)

&& (freelist fp))) M. (* 10 *)

This specifies on line (1) that the entire code block of freergn_cmds should lie within

the external code area. The remaining lines specify the required layout of memory when

freergn is called. MM is the representation of the entire CAP machine memory (a function

with infinite domain) while M is a finite mapping from addresses to words. The appliesto

predicate (2) ensures that the contents of M and MM are consistent and then I use a separa-

tion logic assertion to specify the contents of M. M is broken into three disjoint portions.

On one portion (3), an arbitrary predicate, PmemA, will hold and this part of memory will

not be modified (PmemA will hold in the postcondition as well and the area of memory

that it holds on is actually the external code and RgnTAL code areas). Next, address 2 in

memory points to the beginning of the data area of memory. Lines (5) and (6) state that

there is no code in this data area of memory and that it has size dmsize. The last four

lines describe the parts of memory that freergn will actually manipulate. Within the data

memory, there is a freelist (10) and freergn also expects a pointer to a rgnblock data

structure in register r0 (7). The code may also need to access the size of the data area (8)

and the pointer to the freelist (9). Finally, the remaining portions of the data memory

will remain unchanged as described by another abstract predicate PmemB (7).

132

The postcondition of freergn, namely the state of memory and register file just be-

fore the final jump, is described by the following predicate, which takes the PmemA, PmemB

predicates of the precondition as parameters and also the state of the register file at the

beginning of the function. The postcondition specifies that the registers used by RgnTAL

programs (the first 8 registers) will be unchanged by the end of this function. Also, mem-

ory will be mostly the same except that the region that was to be freed has been added

to the freelist and therefore the freeblock assertion that appeared on line (7) above is

gone:

fun PmemA PmemB RR =>

fun St’ => match St’ with ((MM’,RR’),pc’) =>

(eqonregs talregs RR RR’)

/\

exists M’, exists dmmin, exists dmsize, exists fp,

(appliesto M’ MM’) /\

(PmemA && (2 |-> dmmin)) &&

((fun Md => (forall a, indomf Md a -> ~(iscodearea CT a 1))) &

(fun Md => (coversfnat _ Md dmmin (dmmin+dmsize))) &

(PmemB && (dmmin |-> dmsize)

&& ((dmmin+1) |-> fp)

&& (freelist fp))) M’.

Putting all the pieces together, then, we have the complete definition of freergn_req

in Figure 5.16. Now, the freergn code block can be certified safe as a Coq lemma stating

that for any precondition Pfree satisfying the constraints of freergn_req, the command

sequence will be well-formed:

Lemma 5.1 (Well-formedness of freergn cmds)

Lemma freergn_wfcap : forall CT Pfree,

freergn_req CT Pfree -> WFCapCmds MySP CT Pfree freergn_cmds.

Proving this lemma just involves application of the appropriate CAP inference rules

in Figure 4.2. For most commands the postcondition (Q in the inference rules) is simply

generated by computing the strongest postcondition based on the operational semantics

of the CAP machine. For example, the postcondition of the first command, movi r8 2, is:

fun (St2:state) => match St2 with ((MM2,RR2),pc2) =>

MM2 = MM /\ RR2=(updatereg RR r8 2) /\ pc2=(S pc) end.

133

(* postcondition requirements for the final jump *)

Definition freergn_jmp_req (CT:cdspec) (PmemA PmemB:mempred) RR dmmin dmsize

: Prop :=

exists n, exists Q, CT(RR r7) = someT (n,*Q) /\

forall (M:fmap word word) (MM:mem) RR’ fp,

(eqonregs talregs RR RR’) /\

(appliesto M MM) /\

(PmemA && (2 |-> dmmin)) &&

((fun Md => (forall a, indomf Md a -> ~(iscodearea CT a 1))) &

(fun Md => (coversfnat _ Md dmmin (dmmin+dmsize))) &

(PmemB && (dmmin |-> dmsize)

&& ((dmmin+1) |-> fp)

&& (freelist fp))) M

-> Q(MM,RR’,RR r7).

(* constraints on the precondition of freergn_cmds *)

Definition freergn_req : cdspec -> pred -> Prop :=

fun CT Pfree =>

forall St, Pfree(St) ->

match St with ((MM,RR),pc) =>

ec_min <= pc /\ (pc + (length freergn_cmds)) < ec_min+ec_size

/\

exists M, exists PmemA, exists PmemB,

exists dmmin, exists dmsize, exists fp, exists rsize, exists nxt,

(appliesto M MM) /\

(PmemA && (2 |-> dmmin)) &&

((fun Md => (forall a, indomf Md a -> ~(iscodearea CT a 1))) &

(fun Md => (coversfnat _ Md dmmin (dmmin+dmsize))) &

(PmemB && (freeblock (RR r0) rsize nxt)

&& (dmmin |-> dmsize)

&& ((dmmin+1) |-> fp)

&& (freelist fp))) M /\

(freergn_jmp_req CT PmemA PmemB RR dmmin dmsize)

end.

Figure 5.16: Complete pre- and post-condition specification for freergn

134

By the time we have reached the second store command, just before the jump, the

state of the memory has been modified in such a way that it is possible to show that the

postcondition Post described above is satisfied. Then, to show that the jump is safe, we use

the fact that Post holds, along with the definition of freergn_req, to satisfy the premise of

the (CAP-JMP) rule in Figure 4.2.

The RgnTAL Interface to freergn

Now that the freergn function has been certified in CAP we must define the interface

through which RgnTAL programs can access it. This involves giving the function a Rgn-

TAL type, which is fairly easy to do:

freergn type = ∀[ρ, ε, α1, . . . , α6]({ρ
1} ⊕ ε, {r0:ρ handle, r1:α1, . . . , r6:α6,

r7:∀[α0, α7](ε, {r0:α0, r1:α1, . . . r7:α7})

freergn in RgnTAL expects register r0 to contain a pointer to a region for which a

unique capability is held ({ρ1}) and register r7 should contain a return continuation which

expects region ρ to have been removed from the capability set. Having defining the Rgn-

TAL code type, I now instantiate the Pfree predicate of the previous section using the

code invariant generator, CpInv (see its definition on page 125):

Pfree = CpInv(AC , C, freergn type)

When proving well-formedness of a complete RgnTAL program that links to freergn,

we will need to apply Lemma 5.1, which in turn requires showing that this definition of

Pfree satisfies the constraints of freergn_req. A final Coq lemma therefore is:

Definition Pfree (CMLyt:heaplyt) (CM:codemem) : pred :=

fun St => (cpinv CMLyt CM freergn_type).

Lemma freergn_type_satisfies_req : forall ExtCode CMLyt CT CM,

iscpgen ExtCode CMLyt CT CM -> freergn_req CT (Pfree CMLyt CM).

135

5.4 Summary

A language with certified region management operations is the first step towards a run-

time system with garbage collection. One of the most common sources of program error

and security holes today is code that accesses and manages memory improperly. In this

chapter, I have shown how to integrate the memory-safety properties provided by a high-

level type system with low-level proofs of runtime system correctness. By continuing

this line of research it may eventually be possible to eliminate most or all of the security

breaches that occur due to faulty memory management. The details in this chapter may

seem overwhelming but in fact the approach is fairly straightforward. As I am applying

tools (e.g. the CiC calculus and Coq proof assistant) in a domain where they have not

been used much before, the notation and development is still primitive. Yet the progress

so far is encouraging and opens up future research areas in streamlining the production

and presentation of such systems for integrating verified code.

136

Chapter 6

Tools and Techniques

During the process of mechanizing the framework described in the preceding chapters,

I (and others working on related research) have encountered a variety of issues– some

interesting, some disappointing– with which we have had to deal. In this chapter, I touch

on a few of the more major hurdles that we have addressed using an assortment of tools

and techniques. I also point out some of the insights gained in reasoning about the safety

of our machine code.

6.1 Proof Development and Automation

One of the major challenges of this research is producing the necessary formalized proofs

of safety. For instance, as mentioned earlier, the region-based runtime library of Chapter 5

has not been completely formalized in Coq yet. There is no apparent difficulty in the

theoretical aspects but the main issue is the technical detail, time, and tedium required for

building the proofs.

I have adopted the Coq proof assistant, which implements CiC– the logic on which

my framework is based. One of the primary motivating factors for the use of CiC as

opposed to other frameworks (such as those mentioned in Related Work, Chapter 7) has

been its strong support for inductive definitions, making it very convenient to encode

137

language syntax and develop syntactic proofs of soundness. Nonetheless, the Coq tool

has been developed and used primarily for purposes other than the proof-carrying code

framework described in this thesis. Thus, its level of automation for the sort of reasoning

I have been using it is somewhat primitive.

Coq provides, in addition to basic concrete syntax for CiC terms and types (i.e. the log-

ical language), a tactic language, Ltac [79], which allows interactive development of proof

terms. Coq comes equipped with some built-in tactics and also allows user-programmable

tactics. Let us examine a proof script for a very small lemma, one that states that if a data

heap value is well-typed in RgnTAL, then its type will not be a code type (because only

pairs are stored in the data heap). In Coq, we state the lemma and then start the proof

script by performing case analysis on the heap value hv:

Lemma wf_heapval_not_tcode

: forall CM MT hv p t A G,

(wf_heapval CM MT hv p t) -> t <> (tcode A G).

Proof.

induction hv; intros.

Coq returns to us the following state at this point (the terms above the double line are

our premises or derived propositions and our goal is to prove that which is below the

line):

1 subgoal

CM : codemem

MT : memtype

w : wordval

w0 : wordval

p : rgn

t : omega

A : capset

G : regt -> omega

H : wf_heapval CM MT [w, w0] p t

============================

t <> tcode A G

Here we can perform backwards reasoning on the H hypothesis and the typing rule for

pairs to determine that t must be a pair type:

inversion H; auto.

138

The proof state becomes:

...

H6 : tpair t1 t2 p = t

============================

tpair t1 t2 p <> tcode A G

Based on injectivity of constructors of an inductive definition, we can prove this in-

equality using a built-in tactic:

discriminate. Qed.

Notice that for terms which one does not specify a name, Coq introduces them into the

proof context with automatically generated names, like H, H0, H1, The tactics then refer

to these hypotheses by the introduced name. When developing large proofs that have

many of these automatically generated names, the proof script may contain references to

a number of hypotheses Hi. During the development, one might discover the need for an

additional hypothesis, or delete an unnecessary one. This causes the order of introduced

names to change and the tactic commands in the proof script are all referring to the wrong

names, requiring one to go through and update the entire proof script manually. This

is a major problem and I have addressed it by trying to redefine the tactics so that one

would refer to the judgment wf_heapval in the proof script instead of the arbitrary name

H. Hence, instead of inversion H above, I use mcinv wf_heapval (mc for match-in-the-

context). Not only does this relieve one from editing the entire proof script if the order of

hypotheses change, it makes the proof script slightly more intelligible.

Writing such a tactic as mcinv is not hard in Coq but it seems to be awkward given

the tactic language design. Coq provides a general matching construct that allows pat-

tern matching on terms in the goal or (hypotheses) context. However, it does not support

matching on curried application so the definition of mcinv ends up looking like the fol-

lowing:

139

Ltac mcinv t :=

match goal with

| H:t |- _ => inversion H; auto

| H:(t _) |- _ => inversion H; auto

| H:(t _ _) |- _ => inversion H; auto

| H:(t _ _ _) |- _ => inversion H; auto

| H:(t _ _ _ _) |- _ => inversion H; auto

| H:(t _ _ _ _ _) |- _ => inversion H; auto

| H:(t _ _ _ _ _ _) |- _ => inversion H; auto

end.

Thus, the tactic only matches constructors with up to 6 arguments. There is no way

to pattern match on the head of the constructor in general, regardless of its number of

arguments. For mcinv this is not so bad but for other tactics it leads to verbose matching

constructs. At any rate, I have redefined a number of the primitive tactics to match the

heads of terms instead of hypothesis names, including rewrite, elimination, injection, clear

(removing unnecessary hypotheses) and unfold (expand a definition) tactics.1

Returning to the lemma example above, it would be nice once we have proved this

simple lemma for Coq to automatically try and apply it whenever we have a goal that

matches its conclusion. Coq does allow one to add lemmas to the database for its auto and

eauto tactics. However these auto tactics often fail to apply lemmas like wf_heapval_not_tcode

because there are variables in the premises which do not appear in the goal and the tac-

tics are not always able to infer them automatically from a context. There are many other

situations when it seems that it should be possible to automatically infer proofs terms or

perform simple proof search to establish a goal but the standard Coq tactics do not pro-

vide that facility. There is the possibility of implementing such advanced tactics in the

underlying OCAML implementation of Coq, and this has been done for tactics related to

arithmetic reasoning, for example, but I have not yet had the opportunity to dig deeply

into the data structures and proof representation of the implementation.

One construct that has been used heavily in my implementation is the partial function,

which I define as:

Definition fmap (A,B:Set) := A -> option B.

1Most of such tactics will be found in the Coq file mystuff.v of my developments.

140

In addition to standard access and update operations on partial functions, I define (ex-

tensional) equality and disjointness, which are used especially in the encoding of separa-

tion logic primitives. I have then developed a large library, including lemmas and tactics,

for reasoning about these various operations, which is available in the fmap.v source file

of the Coq developments of Chapters 4 and 5.

6.2 Inductive Types, Impredicativity, and Encoding Polymorphism

Typed assembly languages do not have term-level variables because one works only with

a fixed set of registers. Therefore, encoding the term language of TAL in Coq does not

present a problem because we can simply use a first-order representation. However, the

type system for realistic TALs, as for RgnTAL in Chapter 5, will include features such as

polymorphism, existentials, and recursive types. This requires us to deal with TAL type

variables and related issues like substitution in the logical encoding. An elegant way to

handle binding constructs and variables is higher-order abstract syntax (HOAS) [63]. The

basic idea of HOAS is to represent object level (e.g. TAL) binding constructs and variables

using the functional types and metavariables of the logical system (e.g. Coq). The benefit

of doing so is that we avoid having to reason properties about the binding constructs of

the object language, such as variable substitution, renaming, and scope– all the necessary

properties are inherited from the logic itself.

Let us look again, then, at my encoding of RgnTAL types, from Figure 5.3:

Inductive omega : Set :=

| tint : omega (* int *)

| thandle : rgn -> omega (* p handle *)

| tpair : omega -> omega -> rgn -> omega (* t1 x t2 at p *)

| tcode : capset -> (regt -> omega) -> omega (* code A,G *)

| tabsr : (rgn -> omega) -> omega (* \/ p:Rgn. t *)

| tabsc : (capset -> omega) -> omega (* \/ c:Cap. t *)

| tabscb : (capset -> omega) -> capset -> omega (* bounded poly over cap *)

| tabscd : forall (c1 c2:capset), ((disjcap c1 c2) -> omega) -> omega

| tabst : (omegaV 1) -> omega (* \/ t:Type. t’ *)

| trec : (omegaV 1) -> omega (* \mu t:Type. t’ *).

141

Notice in the tabsr and tabsc constructors that abstraction over RgnTAL region and

capability variables is represented by a Coq function from the appropriate set to omega.

Then, constructor application in RgnTAL corresponds directly to application in the logic–

we do not need a separate definition of substitution, variable renaming, etc. However,

HOAS has not been used in the tabst case – for abstraction over RgnTAL types them-

selves. It would have been nice to be able to define the tabst constructor as well to have

type (omega -> omega) -> omega, but the leftmost omega in this expression represents

a negative occurrence, which is not allowed in CiC for the inductive type that is being

defined. This restriction on inductive type definitions is necessary to enforce consistency

of the logic [79].

One approach to try and bypass this restriction is to use the impredicativity of the

CiC universe Set. That is, instead of defining separate constructors for abstraction over

regions, capabilities, and types, we define a single constructor which captures abstraction

over any Set. Since omega is itself in Set, we could then instantiate this constructor with

omega:
Inductive omega : Set :=

...

| tabs : forall (j:Set), (j -> omega) -> omega

Thus, for example, the RgnTAL type ∀[α :Type](A,Γ) would be represented as

(tabs omega (fun (t:omega) => (tcode A G)))

for appropriate A and G.

This approach had been used previously in [74]. However, it turns out that this trick

does not work for my purposes. By defining omega in this way, we have built a so-called

large inductive definition on which additional restrictions apply for elimination, again in

order to maintain consistency of the logic [78]. In particular, we cannot write projection

functions that return the first or second arguments of tabs. This limitation is quite un-

fortunate because we would need such projections to prove injectivity of the constructors

when developing the syntactic soundness proof for the type system.

[74] was not interested in proving soundness of the encoded type system in Coq itself

142

and therefore did not run into this problem. Nonetheless, the latest version of Coq has

removed the impredicativity of the sort Set in order to have a more consistent logical

system in the eyes of the intuitionistic mathematician community. Therefore, the default

configuration of the Coq proof checker will not even allow large inductive definitions

such as the one above any more.2

In any event, it seems to be difficult to represent RgnTAL type abstraction using HOAS

and so I have utilized a deBruijn index representation for type variables. In order to keep

the effects of the deBruijn representation localized from the main development and proofs,

I define a “lifted” version of omega as follows:

Inductive omegaV : nat -> Set :=

| tvvar : forall i, omegaV (S i)

| tvlift : forall i, omegaV i -> omegaV (S i)

| tvint : omegaV 0

| tvhandle : rgn -> omegaV 0

| tvpair : forall i, omegaV i -> omegaV i -> rgn -> omegaV i

| tvcode : forall i, capset -> (regt -> omegaV i) -> omegaV i

| tvabsr : forall i, (rgn -> omegaV i) -> omegaV i

| tvabsc : forall i, (capset -> omegaV i) -> omegaV i

| tvabscb : forall i, (capset -> omegaV i) -> capset -> omegaV i

| tvabscd : forall i, forall (c1 c2:capset),

((disjcap c1 c2) -> omegaV i) -> omegaV i

| tvabst : forall i, omegaV (S i) -> omegaV i

| tvrec : forall i, omegaV (S i) -> omegaV i.

This definintion keeps track of the number of free type variables in the term. Thus

(omegaV 1) is the kind of an encoded RgnTAL type which may have up to one free type

variable in it. The first two constructors of omegaV are for the deBruijn representation–

the first is for the actual type variables and the second is to lift the degree of a type. That

is, a type with up to i free variables in it can also be treated as a type with up to i+1

free variables. The remaining constructors of omegaV are simply mirror images of the

omega definition that propagate the number of free type variables. Notice that the tvabst

constructor (and the tvrec) binds a type variable– it takes a type with i+1 free variables

and binds the topmost one to produce a type with only i free variables.
2Although the feature may be restored in the current version of Coq using a command-line argument.

143

Fixpoint subst_aux (i:nat) (t:omegaV i) struct t

: forall j, i=(S j) -> omegaV j -> omegaV j

:= match

t as X in (omegaV i) return (forall j (p:i=S j) (e’:omegaV j), omegaV j)

with

| tvvar n => fun j _ e’ => e’

| tvlift n t’ => fun j (p:S n=S j) _ =>

eq_rec n _ t’ j (myeqaddS n j p)

| tvint => fun j (p:0=S j) _ => O_S_set _ j p

| tvhandle _ => fun j (p:0=S j) _ => O_S_set _ j p

| tvpair n t1 t2 p’

=> fun j (p:n=S j) e’ =>

tvpair j (subst_aux n t1 j p e’)

(subst_aux n t2 j p e’) p’

| tvcode n A G => fun j (p:n=S j) e’ =>

tvcode j A

(fun r => (subst_aux n (G r) j p e’))

| tvabsr n Fr => fun j (p:n=S j) e’ =>

tvabsr j

(fun p’ => (subst_aux n (Fr p’) j p e’))

| tvabsc n Fc => fun j (p:n=S j) e’ =>

tvabsc j

(fun c => (subst_aux n (Fc c) j p e’))

| tvabscb n Fc A => fun j (p:n=S j) e’ =>

tvabscb j

(fun c => (subst_aux n (Fc c) j p e’)) A

| tvabscd n c1 c2 Fcd => fun j (p:n=S j) e’ =>

tvabscd j c1 c2

(fun D =>

(subst_aux n (Fcd D) j p e’))

| tvabst n t’ => fun j (p:n=S j) e’ =>

tvabst j

(subst_aux (S n) t’ (S j)

(myfequal _ _ S _ _ p)

(tvlift j e’))

| tvrec n t’ => fun j (p:n=S j) e’ =>

tvrec j

(subst_aux (S n) t’ (S j)

(myfequal _ _ S _ _ p)

(tvlift j e’))

end.

Figure 6.1: Substitution for the encoding of RgnTAL types.

144

The deBruijn representation means that I do not need to worry about alpha-equivalence

in the encoding of types. However, I do need to explicitly define the substition operation.

The definition of omegaV allows the use of dependent types to enforce the correctness of

substitution. Hence, I can define a function,

Definition substV : omegaV 1 -> omegaV 0 -> omegaV 0

:= fun T t => (subst_aux _ T _ (refl_equal 1) t).

which takes a type with one free variable T and a type with no free variables t and

substitutes t for the variable in T to return a type with no free variables. The function

actually makes use of a more generalized version shown in Figure 6.1. The Coq syntax

needed to code this function is somewhat opaque,3 but it basically takes a type t, with

j+1 (= i) free variables, and a type e’, with one less free variable, and substitutes e’ for

the topmost free variable in t.

In the tvvar case, we have found the free variable which is to be substituted so we

replace it with e’. In tvlift we know that the lifted term does not contain the variable

we are substituting for so we simply return t’. However, it is necessary to cast the type

of t’ from (omegaV n) to (omegaV j) where i = j + 1 = n + 1, using the elimination

operator on equality eq_rec. The simple constructors such as tvint should not have

to be considered because they will not contain any free type variables (they have kind

omegaV 0); thus the lemma O_S_set eliminates these cases based on the absurd proof p

that O = j + 1. In the remaining cases, the substitution is simply propagated through

the constructors as necessary.

After substitution, I define functions using similar techniques which convert between

the two versions of omega and also a function to unfold a recursive type (by substituting

itself for the free variable in its body):

Definition unliftV0 : omegaV 0 -> omega := ...

Definition lifttoV : omega -> omegaV 0 := ...

Definition unfoldV : omegaV 1 -> omega

:= fun t:(omegaV 1) => unliftV0 (substV t (tvrec _ t)).

3Much credit goes to Valery Trifonov for working out the way to write this function in Coq.

145

As mentioned earlier in this section, the use of two versions of omega keeps the reason-

ing about deBruijn encodings out of most of the proofs. The reason should be clear from

the standard statements of the preservation and progress lemmas for showing soundness

of a type system in the syntactic method (see Section 5.2 for example): in these proofs

we need to reason about well-typed programs at the top-level, where the type variable

context is empty. The only time that it is necessary to deal with type variables is when the

current instruction is a jump or branch to another code block whose specification may be

a polymorphic type. At this point, we need to instantiate the variables of the code block

type context with types of the correct kind from our top-level context, but once that is

done, we have immediately again a type with no free variables.

The other place in the type system where type variables are introduced into the context

is the typing rule for code heap values. For example, in RgnTAL we had:

C;∆;A; Γ ` I

C ` code [∆](A,Γ).I
(C-CODE)

I encode this rule using a hybrid scheme of HOAS and deBruijn substitution:

Inductive wf_codeval : codemem -> codeval -> Prop :=

| wf_cvcode : forall CM (t:omega) Is,

(forall (Ts:list constr) A G,

instcodetype t Ts (tcode A G) ->

wf_iseq CM A G Is) ->

wf_codeval CM (cvcode t Is)

The instcodetype relation corresponds to substitution of a list of constructors for the

variables in a RgnTAL type context: τ[~c/∆] = ∀[·](A,Γ). Thus, in wf_cvcode I use the

idea of HOAS to introduce a set of Coq variables Ts and then substitute them into the

deBruijn encoding to obtain a code type where the variables of the object language are, in

fact, represented as variables of the meta-language.

One final detail in this method of encoding RgnTAL variables is that I end up need-

ing to specify an extensional definition of equality on types because of the use of functions

(for HOAS) in the constructors representing abstraction over regions and capabilities cou-

146

pled with the representation of type abstraction using first-order abstract syntax (deBruijn

indices).

The need for deBruijn indices certainly has an effect on the elegance and convenience

of encoding the RgnTAL type system in Coq and reasoning about it. Furthermore, I can-

not derive in my type systems the immediate benefits of the impredicative alternative

described above for the purposes detailed in [74, 82]. Nonetheless, I do manage to have

an encoding of the TAL type systems for which the necessary proofs can be developed to

satisfy the needs of the FPCC framework. As future work, it will be beneficial to explore

the use of alternate logical frameworks, such as the Twelf framework, instead of Coq,

which would allow the proper use of HOAS, thus simplifying much of the effort involved

in formalizing the binding constructs of the type system. On the other hand, the benefit

of using Coq is that we reuse the Coq logic for the assertions of our actual object language

(CAP). If we use a logical framework like Twelf, then we will also need to encode the

assertion logic and perhaps prove its properties that are gotten for free by reusing Coq.

This will not necessarily be difficult, but will require a new definition of CAP and some

reorganization of the overall framework.

6.3 Coq Encodings and Adequacy

The handling of type abstraction and variables described in the previous section will per-

haps be somewhat disturbing for the reader familiar with logical frameworks and the use

of HOAS. The issue that may be raised is the one of adequacy. That is, does the Coq encod-

ing accurately capture the syntax and semantics of the language as defined, for example,

in Figures 5.1, 5.5, and 5.6. In fact, as it should be clear from the presentation of Coq de-

tails, the encoding is not adequate with respect to the typeset description of the RgnTAL

language.

I have, for the most part, implemented a shallow embedding of RgnTAL in Coq. That is,

I use the underlying binding mechanism of the logic to represent the binding constructs of

147

RgnTAL (e.g. providing polymorphism over regions and capabilities). Several problems

can arise from the use of a shallow embedding. One is that the usual induction principles

over the structure of terms is lost. This has not been a problem with Coq since the gener-

ated induction principles for omega are sufficient for my purposes. Another problem that

can arise is that reasoning on the syntax becomes more difficult. For example, it would

be hard or impossible to define a function that counts the number of free region variables

in a omega term because there are no bound variables at the object level– they have been

lifted to Coq variables and the logic cannot be used to reason about itself in that way.

Nonetheless, I have not had a need to perform such reasoning on the syntax of RgnTAL

and so this also is not a problem.

Finally, the major issue with shallow embeddings is the difficulty in preserving the

adequacy of the encoding. This exhibits itself in the ability to define exotic terms– terms

that do not encode any valid term of the language according to the BNF description. For

example, in Coq I can define the following very strange omega term, which does not cor-

respond to any valid RgnTAL type according to Figure 5.1:

Definition exotic : omega

:= tabsr (fun r => match r with

| 0 => tint

| _ => (thandle r) end).

The occurrence of such exotic terms in the RgnTAL encoding is compounded by the

fact that I have represented type abstraction using a first-order encoding (deBruijn in-

dices), described in the preceding section of this chapter. Thus, one could define a term

that performs strange manipulations on the deBruijn index representing a type variable.

When using HOAS to encode an object language, one usually either uses a logical

framework that does not exhibit such problems, or else one would define a valid predi-

cate on omega terms to somehow prevent the formation of such exotic terms. However, in

my case, I do not need to do this. The reason is that even if the encoded language does

not adequately represent the original, I have still proven formally the type soundness of

the system. Therefore, even if exotic terms are somehow introduced into a well-typed

148

program, they will not affect the soundness of the language and the translation into CAP

will still satisfy the safety policy.

The normal use of logical frameworks is to encode an object language and prove prop-

erties about the encoding that will be applicable to the object language. Usually, in such

a situation, one implements a type-checker or compiler for the object language separate

from the logical encoding and it is therefore necessary to be sure that the proofs developed

for the logical encoding will also hold for the implementation. In my case, the logical en-

coding is also the implementation and therefore, even if the encoding actually captures

a more complex language than what is initially “on paper”, it is irrelevant as long as the

necessary safety proofs can be generated in the end.

Note, though, that there is one aspect of the encoding that must be adequate in my

framework. That is the encoding of the machine semantics in Section 2.1. Ultimately, I am

proving the safety property for the machine encoding. If the encoding in Coq does not

match the actual behavior of the machine, then the Coq proofs are useless. Adequacy in

this situation is fairly easy to establish, however, because the machine encoding is sim-

ply first-order and can be directly checked against the specifications of the hardware’s

operation.

In summary of the discussion in this section and the previous two, then, I can list the

major advantages and disadvantages of using the Coq tool to develop my prototypes.

Most of these are actually issues with the Coq logic– CiC– as opposed to the actual soft-

ware implementation. The advantages are:

• The inductive types, along with base logic of CC, provide a very expressive sys-

tem in which to encode systems and reason about them. (Unfortunately, this great

expressiveness plays a part in some of the disadvantages listed below.)

• By using the logic at different layers, we are able to directly embed the entire rea-

soning power of CiC into the assertions of our object language, CAP. In defining the

syntax of CAP, the assertions are arbitrary CiC predicates on state (another instance

149

of the use of shallow embedding). That means that CAP assertions can easily refer

to the RgnTAL encoding and use its properties to certify safety of its own code.

On the other hand, the main disadvantages that I have encountered are:

• Proof automation is very primitive. Because of the expressiveness of the logic, and

especially the presence of inductive types, the search space seems to be too large to

handle much automated searching for proof terms. Thus, one must use primitive

tactics when developing proofs and there is not a reasonably good way to compose

more effective tactics for a given proof development without resorting to program-

ming in the underlying OCaml implementation.

• The fragility of Coq proof scripts, which are sequences of tactic commands, means

that making a change to some part of the object encoding may potentially affect a

major part of the scripts, requiring manual editing, to adjust the order of operations,

or to rename hypotheses, for example. This is not even taking into account the

changes in syntax or the behavior of tactics that occur with new releases of the Coq

tool. Explicitly building the proof terms, instead of using the tactics, is not much

more use because again when a change is made to the system being encoded, the

proof terms have to be edited to reflect that.

• The limited ability for using higher-order abstract syntax in encodings means that

one must resort to reasoning about terms with deBruijn indices or some similar first-

order representation. Not an enjoyable task for a human being, even if the amount

of such reasoning needed is limited, as I have tried to do. Eventually, programs that

are even as complex as the Fibonacci example in Appendix C result in one having to

manage quite large proof terms in order to build a type checking derivation. While

doable for a prototype implementation, this quickly becomes too tedious for a hu-

man to handle, and should be handled by an automated tool built for that purpose.

• In addition to the deBruijn indices, another area of reasoning that becomes cumber-

150

some in Coq is that of equality. Because of the dependent types that are used in the

encodings, it sometimes becomes complex to reason about equality between terms.

Figure 6.1 demonstrates a simple example of this.

These issues certainly indicate that there is much future work to be engaged in, in-

cluding the evaluation of alternate frameworks for reasoning than Coq or CiC.

6.4 Function Pointers, Mutable Memory, and Reflection

The discussion in this section may perhaps be best viewed as future work but I include it

here since it might throw some light on how the syntactic approach to FPCC that I have

developed handles tough language features like function pointers and mutable memory.

In a recent paper, Reynolds makes the following observation about Hoare logic:

Even as a low-level language, the simple imperative language axiomatized by

Hoare is deficient in making no provision for the occurrence in data structures

of addresses that refer to machine code. Such code pointers appear in the

compiled translation of programs in higher-order languages such as Scheme

or SML, or object-oriented languages such as Java or C#. Moreover, they also

appear in low-level programs that use the techniques of higher-order or object-

oriented programming.[67]

The difficulty of handling first-class code pointers in Hoare logic arises immediately in

proof-carrying code frameworks because they are usually based on proving safety using

Hoare logic-style reasoning with pre- and post-conditions for each machine command.

Besides having to deal with first-class code pointers, programs compiled from the TALs

presented in this thesis will also have blocks of code that make recursive calls to each

other indirectly. Suppose we have a CAP program with the following command block in

memory:

l2 7→ C2; jmp r2

151

To prove this code safe, we would need to specify somehow that the address in r2 is a

pointer to code that requires, for example, r1 = 1 before jumping to it.4 In CAP, therefore,

the code specification for code address l2 would be given by something like:

Φ(l2) = {codeptr(r2, {r1 = 1})}

where codeptr is a predicate that somehow specifies the precondition of r2 to be {r1 =

1}. Defining codeptr for this can already be tricky but it gets much more complicated

with recursive functions. Consider another code block in memory that may be mutually

recursive with l2:

l2 7→ C2; jmp r2

l3 7→ C3; jmp r3

At runtime the register r3 may contain l2 and r2 may contain l3. One way to handle this

would be to analyze the whole program to find out all possible targets of these jumps and

then build a specification which is a disjunction of these concrete target labels. However,

this does not allow for very modular specification and checking of code blocks. What we

want to be able to specify is something like:

Φ(l2) = {Φ(r2) ∧ codeptr(r2,Φ(r2))}

Φ(l3) = {Φ(r3) ∧ codeptr(r3,Φ(r3))}

Namely, for l2, there is some precondition of r2 specified in Φ which holds at the point

that the jump from l2 takes place. Of course, this cannot be defined in Coq because we are

trying to use Φ in its own definition.

It is interesting that Reynolds, following the statement quoted at the beginning of this

section, goes on to suggest the introduction of a reflection operator to handle such code

pointers. Reflection, in general, refers to an entity’s (the entity usually being an executable
4More accurately, I should write R(r1) = 1, where the specification is a predicate on machine state, but for

simplicity I leave the state components implicit in these examples.

152

program) ability to represent and operate on itself in the same way it deals with its other

constituents [21]. Notice that in the specifications of l1 and l2 above, Φ is trying to reflect

on its own contents.

It seems that the manner in which the syntactic approach to FPCC handles first-class

code pointers is similar to the use of reflection and especially the related process of reifi-

cation. In terms of executable programs, reification is the provision of a mechanism for

encoding execution state as data. Once the execution state has been represented as data

somehow, the data can be inspected or modified and reintroduced into the execution state.

In a similar way, we may view the TAL code types as reified data which are reflected into

the definition of the CAP code specification. The CpInv function in Section 4.4.3 defines

the relationship between syntactic data structures (the encoding of the TAL language and

type system) and the predicates on state which make up the code specification of CAP

through CpGen. During the process of proving safety, we know that the specifications for

code compiled from TAL are based on the syntactic terms that encode the syntax of TAL.

In other words, we know that the CAP preconditions, which can potentially be predi-

cates of arbitrary form, have been generated from the TAL encoding and therefore we can

reason about their properties and interaction based on the structure of TAL syntax. The

syntactic encoding, in turn, has appropriate typing rules for handling recursive code and

the encoded soundness proof of the language shows by induction one step at a time that

the typing rules are meaningful. Therefore circularity in the reasoning about specifica-

tions is eliminated.

The way mutable memory is dealt with in the syntactic framework is also similar to

code pointers. Recall from the Introduction, Section 1.3, that the semantic approach tries

to verify the store instruction by introducing an allocset. The allocset mapping keeps track

of the types at each location in memory in order to maintain consistency in the presence of

aliasing. In the semantic framework, however, types are predicates in the logic, which in

turn depend on the allocset. This introduced a troublesome circularity in the definitions.

153

In the syntactic approach, instead of using an allocset that maps to predicates, I am

essentially mapping addresses to syntactic terms (again, the inductive definition of TAL

types) that describe the layout of memory. Since these terms are simply first-order objects

in the logic, it is easy to reason about them, in particular, to ensure that the description

of memory is consistent in the presence of aliasing. Then I define how to interpret these

syntactic terms (i.e. reflect them) as predicates, which again takes place in the definition

of CpInv.

The use of CpInv thus enforces a number of constraints on the CAP predicates which

are useful for proving the safety theorems. However, many of the issues are still meshed

together and I hope in future work to separate the handling of mutable memory from

code pointers, for example. Even as we went from a monolithic invariant in Chapter 3 to

the local construction of CpInv for individual instructions in Chapter 4, I hope to further

distill the components of CpInv. This could lead to a better understanding of how to

produce foundational PCC and allow for more general support of interaction between

different type systems.

154

Chapter 7

Related Work

The development of this thesis has taken place in the context of a great number of related

works. Not only have I found useful ideas in older researches, there are a number of

contemporary developments in various areas which complement my framework. In this

chapter, I give an overview of related work in several areas that my research has touched

and benefitted from.

7.1 Proof-Carrying Code

I have already given some overview of the development of proof-carrying code in the

Introduction. Here I summarize the lines of research as they have developed historically

and continue to do so. The idea of PCC was introduced by Necula and Lee and applied

in several case studies [56, 54, 58, 57]. The original framework was also used to build a

certifying compiler for Java, described in Colby, et al. [15].

More recently, there have been ongoing efforts to reduce the trusted code base of these

traditional PCC systems, which have mostly focused on removing parts of the VCGen

from the TCB while maintaining the scalability and industrial-strength engineering qual-

ity that marked the first implementations. To this end, Necula and Schneck have pre-

sented a series of incremental improvements to their PCC framework [59, 70, 60]. In their

155

latest work, the PCC code producer is responsible not only for supplying the machine

code but also a verifier which proves the code safe. The verifier is an actual executable in-

stead of being a static proof. This untrusted verifier interacts with a smaller, trusted, core

VCGen to prove safety of the code. The system is intended to be more secure and flexible

by removing a large part of the original VCGen from the trusted base, but in doing so they

have begun to encounter the technical issues that arise in foundational PCC, such as the

handling of code pointers. In his thesis, Schneck [69] also begins to address the issue of

interoperation between different languages in the PCC system. The Open Verifier frame-

work, as it is called, is still under development but appears to be approaching a solution

similar to my use of the CAP specification system. Currently, the integration seems to be

somewhat limited in nature, with programs being able to interoperate only if their mem-

ory areas are completely disjoint. The Open Verifier does not use a language like CAP as

a common intermediate level, but it does involve specifying invariants (preconditions) of

each machine instruction which are based on the syntactic encoding of the type system, as

I have developed. It may be therefore, that these lines of research will merge at some point

in the future, or at least produce results that are mutually beneficial for each approach.

In another line of research, Bernard and Lee [9] investigated the use of temporal logic

to remove the VC generator from the TCB. In particular, the idea is to use temporal logic as

the basis for a formal security-policy language, instead of having the security policy and

enforcement mechanism built-in to a trusted VCGen. This work also may be viewed as

complementary to other PCC research. Furthermore, another group of researchers [90, 89]

have been using the Isabelle/HOL framework to verify the VC generator component of

a traditional proof-carrying code system. They currently have developed a prototype

framework with a generic VCGen that can be instantiated with a particular programming

language, safety policy, and safety logic.

In the meantime, Appel, et al. have introduced the notion of foundational proof-

carrying code [4, 48, 5, 3]. As discussed also in the Introduction, their FPCC project aims to

provide a more flexible and secure PCC framework by developing proofs using only the

156

foundations of mathematical logic. In particular, this system uses Church’s higher-order

logic with axioms for arithmetic. The complexities of the semantic approach followed by

this FPCC group meant several years of developing models for various type system fea-

tures – the troublesome mutable references, recursive types, and code pointers. Ahmed

produced a stratified semantic model for handling mutable memory references [2]. A

low-level framework for typed machine language is being developed to encapsulate the

complex portions of the semantic model by serving as a general compilation target from

high-level typed assembly languages [76, 14]. Appel, et al. have also investigated the de-

velopment of a minimal TCB, producing one that includes less than 2,700 lines of code [6],

as well as work on minimizing the size of transmitted FPCC proofs [94].

Taking inspiration from the initial developments of FPCC, I have introduced a frame-

work based on syntactic soundness proofs. While I have concentrated on the use of the

CiC logic, Crary and others have adopted the syntactic FPCC approach to the Twelf [65]

metalogical framework [18, 19]. In the metalogical approach, the operational semantics of

the architecture and encodings of object languages are specified in one logic, while safety

proofs are supplied as metatheorems in the metalogic. The advantage of this system is

ease of development, as illustrated in the design of an expressive typed assembly lan-

guage [18] targeted at a real machine architecture (the Intel IA-32, or x86). One tradeoff,

however, is that the logical system is more complicated and thus may result in a larger

TCB. This research has also produced a low-level language with a type system that is

capable of expressing the interface of a realistic garbage collector [83]. This is similar in

nature to my provision of a region library through code stubs in the TAL heap, except that

it is not as general since the interface is built into the type system. Also, while the inter-

face has been specified, the actual implementation of the garbage collector has not been

certified and therefore does not link together to provide a proof of safety of the complete

application, as the region library does in my case.

Finally, in work predating the development of proof-carrying code, Burstall and McK-

inna introduced the notion of deliverables– a program paired with a proof of correctness.

157

Despite the correspondence to the idea of PCC, this research was focused on a categorical

approach to program development, did not support programs with effects (i.e. impera-

tive programs), and does not seem to have been carried on beyond the simple framework

given in McKinna’s thesis [47].

7.2 Typed Assembly Languages and Region Type Systems

One of the complementary and, in fact, enabling technologies of PCC has been the devel-

opment of typed assembly languages. Morrisett, et al. [52, 50] introduced the design of

a low-level, statically typed assembly language aimed at being more suitable than other

targets (such as Java bytecode) for supporting a wide variety of source languages and op-

timizations. There have been a great number of variants of the original TAL (three in this

dissertation!), each incorporating some interesting feature into the type system. In most

cases, it would be possible to utilize the syntactic approach to FPCC to compile programs

from these TAL variants into certified machine code. A related project that grew out from

TAL is the development of a safe dialect of C, called Cyclone [43]. Cyclone enforces safety

through advanced type system features, while at the same time providing compatibility

with C and retaining its low-level control and performance. Cyclone may potentially be

a good language to use for writing certified system libraries, such as the region manage-

ment library, and then compiling it down to a version of TAL. Cyclone provides support

for a number of different memory management mechanisms [31, 36] including regions

(a memory management discipline introduced by Tofte and Talpin [80, 81]) and garbage

collection.

The type system I use for RgnTAL is based on the capability calculus of Walker, et

al. [85, 20] for typed memory management. This work in turn was based on earlier re-

search [75, 86] using a linear type system to track pointer aliasing and destructive op-

erations on memory objects. I have left out many of the details and background of the

development of a region-based type system in this dissertation because I have, for the

158

most part, directly adopted the work of [85, 84] in this regard.

7.3 Encoding Object Languages with Variable Binding

As discussed in Sections 6.2 and 6.3, one important issue that must be faced with when

encoding object languages is how to encode binding constructs and variables of the lan-

guage. One option is to take a first-order approach resulting in a deep embedding: one en-

codes the variables and binders in the framework by explicit defining the type of variables

(e.g. inductive, as natural numbers), and the necessary concepts of alpha-equivalence,

beta-reduction, etc. . This approach allows us full reasoning power over the object lan-

guage but at the expense of a great deal of machinery to implement the necessary con-

cepts. Some representative examples of this approach in the Coq framework are those of

Huet, who formalized the lambda-calculus [41] using a deBruijn representation, and Bar-

ras, who also used a deBruijn representation to prove the correctness of the Coq kernel in

Coq itself [7].

A more elegant and convenient approach is to use a higher-order abstract syntax

(HOAS) [63] and a shallow embedding, where the binding constructs of the object system are

represented using the binding constructs of the logic itself. However, as discussed in the

earlier chapter, this approach has difficulties in a formal system of inductive definitions

like Coq. There is some ongoing research on how to adapt Coq to the HOAS approach,

among them [23, 22], which introduce a specific (non-inductively defined) type for vari-

able identifiers that delegates alpha-conversion to the metalanguage, while eliminating

the possibility of so-called exotic terms. However, the drawback of this approach is that

the definition of substitution must still be encoded in the logic. In a separate line, [24, 72]

develop a new logic by extending the simply typed lambda-calculus with primitive re-

cursive constructs that allow the programming of adequate HOAS encodings. The goal

is to synthesis the methodology of HOAS used in a logical framework like LF [35] with

systems based on induction principles such as Coq.

159

Another approach to reasoning with HOAS in logics such as Coq is to axiomatize the

necessary theory needed for reasoning about such encodings. This axiomatic approach

has been adopted and developed as the Theory of Contexts by [68, 38, 39, 49]. The issue

here of course is that one begins adding axioms to the base logic, which we would like

to avoid for FPCC, even though much effort has been put into proving their consistency.

[1, 30] also develop an axiomatic approach to reasoning about lambda calculi identified

up to alpha-conversion. A similar work to these others has been presented in [26] which

involves a two-level axiomatic methodology for reasoning about object languages. In this

approach, a specification logic is encoded in Coq as an inductive definition and then the

object logic is encoded in the specification logic.

7.4 Low-level Reasoning and Separation Logic

As in the other areas of related work, there are a great number of developments in reason-

ing about safety at a low level in the language hierarchy. I only try to list here those that I

have found most relevant to my work. Some common features of most, if not all, of these

works are that they involve (1) semi-automatic (i.e. human assisted) generation of proofs

or other form of certification for the low-level code, because of the very intricate nature of

reasoning required, and (2) they only concentrate on certifying or reasoning about code

at one level. My work also exhibits the former feature but in respect of the latter, I have

developed a framework to allow code certified using different methods, at different levels

of abstraction, to interoperate safely.

Historically, advancements in proving program properties have been spurred by the

works of McCarthy [46], Floyd [29], and Hoare [37]. Much of the research projects in

the last couple of decades have focused on formal, mechanical verification of high-level

language programs, as opposed to low-level machine code verification. Of the few excep-

tions, Yu and Boyer [100, 11] mechanically check the correctness of object code programs

for the Motorola MC68020 microprocessor. A substantial piece of research, they veri-

160

fied implementations of a number of well-knowing searching, sorting, and string library

operations. In the process, they had to deal with some of the same issues that I have men-

tioned in this thesis. For “functional parameters” (i.e. code pointers), they essentially end

up hardcoding the addresses of code blocks into their correctness specifications. This is

similar to what we would do if we were programming and certifying code in CAP with-

out reference to predicates related to a syntactic type system. Much of Yu’s work also

involved reasoning about memory operations, which was quite complicated for them be-

cause they did not benefit from the development of separation logic primitives (discussed

below) for that purpose. Finally, their approach was to compile high-level code and then

specify and reason about the object code correctness– unlike my approach where I can

start with high-level code that has been certified correct (according to a type system) and

then compile to machine code, possibly linking into other machine code that has been

certified correct directly at the object code level.

There has been some use of the Coq proof assistant itself for low-level program ver-

ification. Much work has been done in the VerifiCard project at INRIA (France) in the

context of certifying programs for smartcards running the JavaCard virtual machine, for

example [8]. This project in general is very specific to the Java VM language, deals with

high-level specifications of safety and/or correctness, and also focuses on developing

proofs using a proof-assistant (as opposed to fully automatically during a compilation

process). The WHY system developed by Filliâtre [28, 27] is a software certification tool

that produces proof obligations for annotated imperative programs. The imperative lan-

guage used is a high-level language and the proof obligation generator resembles the VC

generator of PCC. It is not clear, however, if the tool can really be extended to support the

necessary low-level reasoning for PCC.

For the purposes of reasoning about low-level manipulation of memory, I have en-

coded the separation logic primitives of Reynolds [67, 66] in Coq. The semantics of the

primitives are defined in terms of the machine memory model and the axioms and infer-

ence rules defined by Reynolds in his works are all derivable within the Coq encoding.

161

More details of the use of separation logic for our FPCC reasoning may be found in [97, 98]

or Yu’s thesis [96]. Reynolds’ work extends earlier work by Burstall [12] and parallels the

independent development of bunched logic by Ishtiaq, O’Hearn, and others [13, 42, 61].

162

Chapter 8

Future Work and Conclusion

My path to the research culminating in this thesis began with an investigation of Java

reflection. Reflection, mentioned in Section 6.4, is an advanced language feature that al-

lows programs to examine, adapt to, and modify representations of their own code and

execution state at runtime. As part of the research related to the FLINT project [73] for

developing a common typed intermediate language, League et al. [45] showed a formal

translation of a large subset of Java language features into a variant of the polymorphic

λ-calculus, Fω .

I began to investigate the possibility of extending the FLINT framework to handle the

reflection library of Java, which in standard Java compilers is implemented in C. It soon

became apparent that proving that runtime library type-safe required reasoning about

memory in ways that the type system of the intermediate language did not easily sup-

port. I have now developed the syntactic approach to FPCC which, as we have seen in

this thesis, provides a reasonably simple and straightforward approach to generate safe

machine code from a typical typed assembly language (such as Java or FLINT might even-

tually compile to). Additionally, I have worked out a method in which runtime libraries

(such as the Java reflection package) can be certified safe using low-level Hoare logic-style

reasoning and then linked together with the high-level compiled code. Of course, I have

presented this work with very ideal languages, not Java or FLINT, so there is much poten-

163

tial for future work. I outline below some of the directions in which this research could

logically proceed.

8.1 Limitations and Future Work

Clearly, a first practical step will be to apply the framework to a real machine and to a

realistic typed assembly language. As mentioned in the related works, Crary [19, 18] has

already begun applying my syntactic framework, using a different logic framework, to

the Intel family of processors. With others in the FLINT project, I have also been working

on a version of CAP for the Intel x86 architecture. The results of these efforts will allow

for a better comparison of the viability of the syntactic approach with respect to previous

developments of proof-carrying code. Although the idealized machine I have used for

the prototype implementation of this dissertation is quite simplistic, the results should be

scalable to different machine architectures. This will not necessarily be a simple task, but

only because of technical details in different architectures, not because of any fundamen-

tal limitations. As TAL technology is scalable to different architectures so would be the

corresponding syntactic FPCC framework.

In order to produce the deliverable of a realistic certified system, we will have to ex-

tend the research along both the engineering and the theoretical aspects. In the engi-

neering aspect, there is much potential for proof development tools and checkers that are

tuned to the FPCC framework. Coq has been an excellent resource for the prototyping,

but it was obviously developed with different purposes in mind and would therefore be

better supplemented by tools specific for our purposes. For example, as described in Sec-

tion 3.3.5, we will need a compiler that deals directly with the logical encodings, as well as

the source and target languages, so as to produce the necessary proofs of well-typedness

and the translation relations. When using a realistic language, we will also need to deal

with real operating system libraries, which will potentially be much more complex to cer-

tify, and definitely much larger, than the simple runtime library examples my prototype

164

uses.

Along more theoretical paths of research, there is the possibility of investigating the

use of alternate logics for the framework. It is certainly not bound to the CiC logic, al-

though the higher-order reasoning and inductive definitions are very handy for our pur-

poses. Whether CiC is used or another logic, the encoding of type variables will remain

an issue to be dealt with– for polymorphic, existential, recursive, and other such complex

types. It is probably also safe to say that the fundamental differences between seman-

tic and syntactic approaches to FPCC are still not well-understood. Future research may

unify the frameworks. Ideas such as those I mention in Section 6.4 could be worked out

to produce a more well-grounded understanding of the underlying relationship between

type systems and Hoare logic.

In addition to the logic used, the syntactic approach to FPCC clearly depends much on

the type system that is being encoded. Not only does the type system have to be encodable

in the logic, it must also enforce the constraints specified by the safety policy. The FPCC

proof will require a complete representation of the typing derivation for a source program,

so the type checking algorithm must be decidable as well. That is, if a fancy type system

such as DTAL [95] involves solving a constraint satisfaction problem – NP-complete in

general, but can often be efficiently solved in practice – one probably cannot expect to

include the constraint solver in the logical encoding. Of course, it might be possible to use

an external type checker (written in a general-purpose programming language) to solve

the necessary constraints and have that represented in the logical encoding so that the

constraint solution only needs to be verified by the proof checker, not solved. It does not

appear that this would be a serious limitation of the syntactic approach, but nonetheless

will require further investigation and research.

Since most type systems will disallow the writing of some perfectly safe programs,

this also means that such programs may not be immediately certifiable for PCC using the

syntactic approach. This may be alleviated somewhat by being able to directly certify the

programs using the low-level CAP layer of reasoning. However, even with CAP, certain

165

types of code may not be certifiable. An immediate example would be self-modifying or

dynamically generated code. CAP currently will not support such programs because the

CAP code specification must be fixed statically at the point of proof-checking. Thus, there

are some aspects of my framework that will bear further research in this respect.

Finally, two more issues that will need to be addressed in a practical development

of such a framework will be the size of proofs that need to be transmitted and the de-

velopment time for proofs. As mentioned earlier in Section 3.3.6, the proofs needed for

a syntactic FPCC framework can be viewed as two portions– a static portion and a dy-

namic one. The former, which is also the larger, portion will be composed of the proofs

of soundness for the type system, proofs about the translation of well-typed source pro-

grams, such as the theorems in Section 4.4.3, or proofs certifying the safety of the runtime

library. These proofs are produced semi-automatically by a human being interacting with

a proof assistant (at least in the current framework), but they only need to be developed

once for a given system. On the other hand, the dynamic portion of the FPCC proof will

be composed of the typing derivation for source programs that have been compiled to be

run by the code consumer. The size of these proofs can probably be greatly minimized

and they are produced automatically during the compilation process.

Thus, the issues of proof size and development time (or effort) will need to be ad-

dressed mainly for the “static” proofs described in the previous paragraph. Since the

mechanized proofs for the syntactic FPCC framework follow very closely the standard

proofs of soundness that are done “on paper,” the mechanization can be achieved with

reasonable effort, although it may not be entirely trivial. For the developments described

in Chapters 2 and 3, the Coq implementation was complete within half a year by a single

graduate student with no previous experience in Coq or CiC. The proofs of soundness

and correctness of compilation for the region-based system of Chapter 5 were completed

in only a couple of months, although the certification of the runtime library has taken

longer to complete, mainly because of tedious issues such as reasoning with deBruijn in-

dices. It therefore seems that the syntactic approach, in terms of implementation effort,

166

is not any harder at the worst than other methods of producing PCC. The issue of proof

sizes is somewhat harder to evaluate at this point because I only have a prototype frame-

work. The Coq proof scripts for Chapter 3 are about 10,000 lines of specifications and

proof tactics.

8.2 Conclusion

It seems at times that I have introduced more new problems than I have solved. Yet the

progress is promising. The work described in this thesis goes a good way towards the

realistic goal of laying a foundation for certifying safety of “the whole code.” More than

ever, codes that are written and compiled from varying levels of the language hierarchy

need to be verified for safe interoperation. It is becoming less and less desirable to allow

infrastructure code, such as operating systems and runtime libraries, to remain in the

trusted computing base of software systems. In summary then, my main contributions

have been:

• Development of the syntactic approach to foundational proof-carrying code, in which

syntactic soundness proofs of a type system are mechanized in a formal logic and

used to produce a safety proof for the compiled machine code.

• A framework for FPCC supporting interoperation between code compiled from

high-level type systems and code for low-level runtime libraries certified semi-automatically

at the machine or assembly level.

• Initial development of a certified region-based memory management library that

links together with a typed assembly language incorporating region capabilities in

its type system.

167

Appendix A

Coq Files for the Syntactic Approach

to Foundational Proof-Carrying Code

This chapter lists the Coq code for the system described in Chapter 3. Proofs of all the

lemmas and theorems listed here have been completed. (I have omitted the actual Coq

proof scripts, composed of long sequences of tactic commands, from these listings as well

as some of the utility libraries and lemmas.)

A.1 An Idealized Machine for FPCC

Machine state

(* Register definitions and utilities *)
Load tisreg.

Definition word := nat.
Definition mem := word → word.
Definition rfile := reg → word.
Definition state := (mem × rfile × word)%type.

(* Commands (machine instruction set) *)
Inductive cmd : Set :=

| add : reg → reg → reg → cmd
| addi : reg → reg → word → cmd
| sub : reg → reg → reg → cmd
| subi : reg → reg → word → cmd

168

| mov : reg → reg → cmd
| movi : reg → word → cmd
| bgt : reg → reg → word → cmd
| bgti : reg → word → word → cmd
| jd : word → cmd
| jmp : reg → cmd
| ld : reg → reg → word → cmd
| st : reg → word → reg → cmd
| ill : cmd.

(* Decode utilities *)
Definition icoded (w : word) : nat := mod w 8.
Definition r1argd (w : word) : nat := mod (div8 w) 32.
Definition r2argd (w : word) : nat := mod (div32 (div8 w)) 32.
Definition r3argd (w : word) : nat := mod (div32 (div32 (div8 w))) 32.
Definition w1argd (w : word) : nat := div8 w.
Definition w2argd (w : word) : nat := div32 (div8 w).
Definition w3argd (w : word) : nat := div32 (div32 (div8 w)).

(* Decode function *)
Definition Dc (w : word) : cmd :=

match icoded w with
| (1) ⇒ add (nat2reg (r1argd w)) (nat2reg (r2argd w)) (nat2reg (r3argd w))
| (2) ⇒ addi (nat2reg (r1argd w)) (nat2reg (r2argd w)) (w3argd w)
| (3) ⇒ sub (nat2reg (r1argd w)) (nat2reg (r2argd w)) (nat2reg (r3argd w))
| (4) ⇒ subi (nat2reg (r1argd w)) (nat2reg (r2argd w)) (w3argd w)
| (5) ⇒ mov (nat2reg (r1argd w)) (nat2reg (r2argd w))
| (6) ⇒ movi (nat2reg (r1argd w)) (w2argd w)
| (7) ⇒ bgt (nat2reg (r1argd w)) (nat2reg (r2argd w)) (w3argd w)
| (8) ⇒ bgti (nat2reg (r1argd w)) (w2argd w) (w3argd w)
| (9) ⇒ jd (w1argd w)
| (10) ⇒ jmp (nat2reg (r1argd w))
| (11) ⇒ ld (nat2reg (r1argd w)) (nat2reg (r2argd w)) (w3argd w)
| (12) ⇒ st (nat2reg (r1argd w)) (w3argd w) (nat2reg (r2argd w))
| ⇒ ill
end.

Machine semantics

Definition updatereg (R : rfile) (rd : reg) (v : word) : rfile :=
fun r : reg ⇒ if beq reg r rd then v else R r.

Definition updatemem (M : mem) (a v : word) : mem :=

169

fun w : word ⇒ if beq nat w a then v else M w.

Definition Step (St : state) : state :=
match St with
| (M, R, pc) ⇒

match Dc (M pc) with
| add rd rs rs’ ⇒ (M, updatereg R rd (R rs + R rs’), S pc)
| addi rd rs w ⇒ (M, updatereg R rd (R rs + w), S pc)
| sub rd rs rs’ ⇒ (M, updatereg R rd (R rs - R rs’), S pc)
| subi rd rs w ⇒ (M, updatereg R rd (R rs - w), S pc)
| mov rd rs ⇒ (M, updatereg R rd (R rs), S pc)
| movi rd w ⇒ (M, updatereg R rd w, S pc)
| bgt rs rt w ⇒

if blt nat (R rt) (R rs) then (M, R, w) else (M, R, S pc)
| bgti rs i w ⇒

if blt nat i (R rs) then (M, R, w) else (M, R, S pc)
| jd w ⇒ (M, R, w)
| jmp r ⇒ (M, R, R r)
| ld rd rs w ⇒ (M, updatereg R rd (M (R rs + w)), S pc)
| st rd w rs ⇒ (updatemem M (R rd + w) (R rs), R, S pc)
| ill ⇒ St
end

end.

Fixpoint MultiStep (n : nat) : state → state :=
match n with
| O ⇒ fun S : state ⇒ S | S m ⇒ fun S : state ⇒ Step (MultiStep m S)
end.

A.2 Featherweight Typed Assembly Language

Syntax

Inductive Reg : Set := r0 : Reg | r1 : Reg | r2 : Reg | r3 : Reg | r4 : Reg
| r5 : Reg | r6 : Reg | r7 : Reg | r8 : Reg | r9 : Reg
| r10: Reg | r11 : Reg | r12 : Reg | r13 : Reg | r14 : Reg
| r15: Reg | r16 : Reg | r17 : Reg | r18 : Reg | r19 : Reg
| r20: Reg | r21 : Reg | r22 : Reg | r23 : Reg | r24 : Reg
| r25: Reg | r26 : Reg | r27 : Reg | r28 : Reg | r29 : Reg
| r30: Reg.

Syntactic Definition label := nat.
Syntactic Definition int := nat.

170

Syntactic Definition initflag := bool.

(* The allocation pointer register is not merged into the normal register file - it just contains a label
with a special type *)
Definition AP := label.
Inductive APTy : Set := fresh : APTy

| used : nat → APTy.

(* Lifted types *)
Inductive OmegaL : nat → Set

:= varL : (i:nat) (OmegaL (S i))
| liftL : (i:nat) (OmegaL i) → (OmegaL (S i))
| inttyL : (OmegaL O)
| codetyL : (i:nat) (OmegaL Map i) → APTy → (OmegaL i)
| tuptyL : (i:nat) (OmegaL List i) → (list initflag) → (OmegaL i)
| rectyL : (i:nat) (OmegaL (S i)) → (OmegaL i)

with OmegaL Map : nat → Set
:= memptyL : (i:nat) (OmegaL Map i)
| melemL : (i:nat) Reg → (OmegaL i) → (OmegaL Map i) → (OmegaL Map i)

with OmegaL List : nat → Set
:= nilL : (i:nat) (OmegaL List i)
| consL : (i:nat) (OmegaL i) → (OmegaL List i) → (OmegaL List i).

Syntactic Definition OmegaR := (OmegaL (S O)).

(* The actual types *)
Inductive Omega : Set := intty : Omega

| codety : (Map Reg Omega) → APTy → Omega
| tupty : (list Omega) → (list initflag) → Omega
| recty : (OmegaL (S O)) → Omega.

(* deBruijn substitution functions *)
Load rftal.

Syntactic Definition RegFileTy := (Map Reg Omega).

Inductive WordVal : Set
:= wl : label → WordVal
| wi : int → WordVal
| wuninit : Omega → WordVal
| wfold : WordVal → Omega → WordVal.

Inductive Instr : Set
:= add : Reg → Reg → Reg → Instr
| addi : Reg → Reg → int → Instr
| alloc : Reg → (list Omega) → Instr

171

| bgt : Reg → Reg → label → Instr
| bump : int → Instr
| fold : Reg → Omega → Reg → Instr
| ld : Reg → Reg → int → Instr
| mov : Reg → Reg → Instr
| movi : Reg → int → Instr
| movl : Reg → label → Instr
| st : Reg → int → Reg → Instr
| unfold : Reg → Reg → Instr.

Inductive InstrSeq : Set
:= iseq : Instr → InstrSeq → InstrSeq
| jd : label → InstrSeq
| jmp : Reg → InstrSeq.

Inductive HeapVal : Set
:= tuple : (list WordVal) → HeapVal
| code : RegFileTy → APTy → InstrSeq → HeapVal.

Definition RegFile := (Map Reg WordVal).

Definition Heap := (WFMap label HeapVal).

Syntactic Definition hunwrap := (unwrapMap label HeapVal).
Syntactic Definition hsize := (msize label HeapVal).
Syntactic Definition hindom := (mindom label HeapVal).
Syntactic Definition hnindom := (mnotindom label HeapVal).
Syntactic Definition hlookup := (mlookup label HeapVal).
Syntactic Definition hupdate := (mupdate label HeapVal).
Syntactic Definition hextend := (mextend label HeapVal).
Syntactic Definition hupdext := (mupdext label HeapVal).

Definition HeapTy := (WFMap label Omega).

Syntactic Definition htunwrap := (unwrapMap label Omega).
Syntactic Definition htsize := (msize label Omega).
Syntactic Definition htindom := (mindom label Omega).
Syntactic Definition htnindom := (mnotindom label Omega).
Syntactic Definition htlookup := (mlookup label Omega).
Syntactic Definition htupdate := (mupdate label Omega).
Syntactic Definition htextend := (mextend label Omega).
Syntactic Definition htupdext := (mupdext label Omega).

Syntactic Definition reglookup := (mlookup ? ?).
Syntactic Definition regupdext := (mupdext ? ?).

Definition Program := (Heap × (RegFile × (AP × InstrSeq))).

172

(* Stuff for the heap *)
Syntactic Definition HeapMap := (Map label HeapVal).

Inductive OrdHeap : HeapMap → Prop
:= ordheap0 : (OrdHeap (mempty ? ?))
| ordheap1 : (l:label; hv:HeapVal; h:(Map label HeapVal))

(msize ? ? h l) → (OrdHeap h) → (OrdHeap (melem ? ? l hv h)).

Inductive PropSubHeap : HeapMap → HeapMap → Prop
:= propsubh0 : (h:HeapMap; l:label; hv:HeapVal) (PropSubHeap h (melem ? ? l hv h))
| propsubh1 : (h,h’:HeapMap; l:label; hv:HeapVal)

(PropSubHeap h h’) → (PropSubHeap h (melem ? ? l hv h’)).

Inductive SubHeap : HeapMap → HeapMap → Prop
:= subheap0 : (h:HeapMap) (SubHeap h h)
| subheap1 : (h,h’:HeapMap) (PropSubHeap h h’) → (SubHeap h h’).

(* Length and positions of an instruction sequence and other utilities *)
Inductive ISubDepth : InstrSeq → InstrSeq → nat → Prop

:= isubd0 : (I:InstrSeq) (ISubDepth I I O)
| isubdS : (I,I’:InstrSeq; i:Instr; n:nat)

(ISubDepth I’ I n) → (ISubDepth I’ (iseq i I) (S n)).

Fixpoint lenInstrSeq [I:InstrSeq] : nat
:= Cases I of (iseq I’) ⇒ (S (lenInstrSeq I’))

| ⇒ (S O) end.

Fixpoint getInstrPos [n:nat] : InstrSeq → InstrSeq
:= [I] Cases n of O ⇒ I

| (S n’) ⇒ Cases I of (iseq I’) ⇒ (getInstrPos n’ I’)
| ⇒ I end end.

Inductive ListNth [A:Set] : (list A) → nat → A → Prop
:= listnth0 : (V:(list A); a:A) (ListNth A (cons a V) O a)
| listnth1 : (V:(list A); a,a’:A; n:nat)

(ListNth A V n a’) → (ListNth A (cons a V) (S n) a’).

Fixpoint makeUninitTup [V:(list Omega)] : (list WordVal)
:= Cases V of nil ⇒ (nil WordVal) | (cons t V’) ⇒ (cons (wuninit t) (makeUninitTup V’)) end.

Fixpoint makeUninitTupty [V:(list Omega)] : (list initflag)
:= Cases V of nil ⇒ (nil initflag)

| (cons t V’) ⇒ (cons false (makeUninitTupty V’))
end.

Inductive updatetuple
: (list WordVal) → int → WordVal → (list WordVal) → Prop

173

:= updtup0 : (V:(list WordVal); w,w’:(WordVal))
(updatetuple (cons w V) O w’ (cons w’ V))

| updtup1 : (V,V’:(list WordVal); w,w’:(WordVal); i:int)
(updatetuple V i w’ V’) →
(updatetuple (cons w V) (S i) w’ (cons w V’)).

Inductive updatetupty : (list initflag) → int → (list initflag) → Prop
:= updtpt0 : (V:(list initflag); b:initflag)

(updatetupty (cons b V) O (cons true V))
| updtpt1 : (V,V’:(list initflag); b:initflag; i:int)

(updatetupty V i V’) →
(updatetupty (cons b V) (S i) (cons b V’)).

Operational Semantics

Inductive Eval : Program → Program → Prop
:= ev add : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd,rs,rs’:Reg; rsval,rsval’:int)
(reglookup R rs (wi rsval)) →
(reglookup R rs’ (wi rsval’)) →
(regupdext R rd (wi (plus rsval rsval’)) R’) →
(Eval (H, (R, (r31, (iseq (add rd rs rs’) I’))))

(H, (R’, (r31, I’))))
| ev addi : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd,rs:Reg; i:int; rsval:int)
(reglookup R rs (wi rsval)) →
(regupdext R rd (wi (plus rsval i)) R’) →
(Eval (H, (R, (r31, (iseq (addi rd rs i) I’))))

(H, (R’, (r31, I’))))

| ev alloc : (H,H’:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))
(rd:Reg; V:(list Omega))
H=(wfmap ? ? h wfh) →
H’=(wfmap ? ? h’ wfh’) →
(regupdext R rd (wl r31) R’) →
(hextend h r31 (tuple (makeUninitTup V)) h’) →
(Eval (H, (R, (r31, (iseq (alloc rd V) I’))))

(H’, (R’, (r31, I’))))
| ev bgt0 : (H:Heap; R:RegFile; r31:AP; I’:InstrSeq)

(rs,rt:Reg; l:label; rsval,rtval:int)
(reglookup R rs (wi rsval)) →

174

(reglookup R rt (wi rtval)) →
(le rsval rtval) →
(Eval (H, (R, (r31, (iseq (bgt rs rt l) I’))))

(H, (R, (r31, I’))))
| ev bgt1 : (H:Heap; R:RegFile; r31:AP; I’:InstrSeq)

(G:RegFileTy; T:APTy; I”:InstrSeq)
(rs,rt:Reg; l:label; rsval,rtval:int)
(reglookup R rs (wi rsval)) →
(reglookup R rt (wi rtval)) →
(gt rsval rtval) →
(hlookup (hunwrap H) l (code G T I”)) →
(Eval (H, (R, (r31, (iseq (bgt rs rt l) I’))))

(H, (R, (r31, I”))))

| ev bump : (H:Heap; R:RegFile; r31:AP; I’:InstrSeq)
(i:int; l:nat)
(hsize (hunwrap H) l) →
(Eval (H, (R, (r31, (iseq (bump i) I’))))

(H, (R, (l, I’))))
| ev fold : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd,rs:Reg; t:Omega; rsval:WordVal)
(reglookup R rs rsval) →
(regupdext R rd (wfold rsval t) R’) →
(Eval (H, (R, (r31, (iseq (fold rd t rs) I’))))

(H, (R’, (r31, I’))))

| ev jd : (H:Heap; R:RegFile; r31:AP)
(l:label; G:RegFileTy; T:APTy; I’:InstrSeq)
(hlookup (hunwrap H) l (code G T I’)) →
(Eval (H, (R, (r31, (jd l))))

(H, (R, (r31, I’))))
| ev jmp : (H:Heap; R:RegFile; r31:AP)

(r:Reg; l:label; G:RegFileTy; T:APTy; I’:InstrSeq)
(reglookup R r (wl l)) →
(hlookup (hunwrap H) l (code G T I’)) →
(Eval (H, (R, (r31, (jmp r))))

(H, (R, (r31, I’))))

| ev ld : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd,rs:Reg; i:int)
(l:label; V:(list WordVal); v:WordVal)
(reglookup R rs (wl l)) →

175

(hlookup (hunwrap H) l (tuple V)) →
(ListNth ? V i v) →
(regupdext R rd v R’) →
(Eval (H, (R, (r31, (iseq (ld rd rs i) I’))))

(H, (R’,(r31, I’))))

| ev mov : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd,rs:Reg; v:WordVal)
(reglookup R rs v) →
(regupdext R rd v R’) →
(Eval (H, (R, (r31, (iseq (mov rd rs) I’))))

(H, (R’,(r31, I’))))
| ev movi : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd:Reg; i:int)
(regupdext R rd (wi i) R’) →
(Eval (H, (R, (r31, (iseq (movi rd i) I’))))

(H, (R’,(r31, I’))))
| ev movl : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd:Reg; l:label)
(regupdext R rd (wl l) R’) →
(Eval (H, (R, (r31, (iseq (movl rd l) I’))))

(H, (R’,(r31, I’))))

| ev store : (H,H’:Heap; R:RegFile; r31:AP; I’:InstrSeq)
(h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))
(rd,rs:Reg; i:int; l:label; V,V’:(list WordVal); w:WordVal)
H=(wfmap ? ? h wfh) →
H’=(wfmap ? ? h’ wfh’) →
(reglookup R rd (wl l)) →
(reglookup R rs w) →
(hlookup h l (tuple V)) →
(updatetuple V i w V’) →
(hupdate h l (tuple V’) h’) →
(Eval (H, (R, (r31, (iseq (st rd i rs) I’))))

(H’,(R, (r31, I’))))

| ev unfold : (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd,rs:Reg; v:WordVal; t:Omega)
(reglookup R rs (wfold v t)) →
(regupdext R rd v R’) →
(Eval (H, (R, (r31, (iseq (unfold rd rs) I’))))

(H, (R’, (r31, I’)))).

176

Static Semantics

(* Register file subtyping *)
Inductive RegFileSubtype : RegFileTy → RegFileTy → Prop

:= weaken : (G,G’:RegFileTy)
((r:Reg; t:Omega) (mlookup ? ? G’ r t) → (mlookup ? ? G r t)) →
(RegFileSubtype G G’).

(* Subtyping *)
Inductive SubtypeB : initflag → initflag → Prop

:= subb refl : (i:initflag) (SubtypeB i i)
| subb true : (SubtypeB true false).

Inductive SubtypeBList : (list initflag) → (list initflag) → Prop
:= subb nil : (SubtypeBList (nil ?) (nil ?))
| subb cons : (L1,L2:(list initflag); i1,i2:initflag)

(SubtypeB i1 i2) → (SubtypeBList L1 L2) → (SubtypeBList (cons i1 L1)
(cons i2 L2)).

Inductive Subtype : Omega → Omega → Prop
:= reflex : (t:Omega) (Subtype t t)
| tuple sub : (ol:(list Omega); il1,il2:(list initflag))

(SubtypeBList il1 il2) → (Subtype (tupty ol il1) (tupty ol il2)).

(* Well-formed word values *)
Inductive WFWordVal : HeapTy → WordVal → Omega → Prop

:= int wval : (HT:HeapTy; i:int) (WFWordVal HT (wi i) intty)
| label wval : (HT:HeapTy; l:label; t,t’:Omega)

(htlookup (htunwrap HT) l t’) →
(Subtype t’ t) →
(WFWordVal HT (wl l) t)

| fold word wval
: (HT:HeapTy)

(w:WordVal; t:OmegaR; t’:Omega)
(RUnlift (RUnfold t))=t’ →
(WFWordVal HT w t’) →
(WFWordVal HT (wfold w (recty t)) (recty t)).

Inductive WFWordValinit : HeapTy → WordVal → Omega → initflag → Prop
:= init : (HT:HeapTy)

(w:WordVal; t:Omega; f :initflag)
(WFWordVal HT w t) →
(WFWordValinit HT w t f)

| uninit : (HT:HeapTy)
(t:Omega)

177

(WFWordValinit HT (wuninit t) t false).

(* Well-formed instruction sequences *)
Inductive WFInstrSeq : HeapTy → RegFileTy → APTy → InstrSeq → Prop

:= s add : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs,rs’:Reg)
(mlookup ? ? G rs intty) →
(mlookup ? ? G rs’ intty) →
(mupdext ? ? G rd intty G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (add rd rs rs’) I))

| s addi : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; i:int)
(mlookup ? ? G rs intty) →
(mupdext ? ? G rd intty G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (addi rd rs i) I))

| s alloc : (HT:HeapTy; G,G’:RegFileTy; I:InstrSeq)
(rd:Reg; n:nat; V:(list Omega))
n=(length V) →
(mupdext ? ? G rd (tupty V (makeUninitTupty V)) G’) →
(WFInstrSeq HT G’ (used n) I) →
(WFInstrSeq HT G fresh (iseq (alloc rd V) I))

| s bgt : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rs,rt:Reg; l:label)
(mlookup ? ? G rs intty) →
(mlookup ? ? G rt intty) →
(htlookup (htunwrap HT) l (codety G’ T)) →
(RegFileSubtype G G’) →
(WFInstrSeq HT G T I) →
(WFInstrSeq HT G T (iseq (bgt rs rt l) I))

| s bump : (HT:HeapTy; G:RegFileTy; I:InstrSeq; n:nat)
(WFInstrSeq HT G fresh I) →
(WFInstrSeq HT G (used n) (iseq (bump n) I))

| s fold : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; f :OmegaR; rst:Omega)
(mlookup ? ? G rs rst) →
(RUnlift (RUnfold f))=rst →
(mupdext ? ? G rd (recty f) G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (fold rd (recty f) rs) I))

178

| s jd : (HT:HeapTy; G,G’:RegFileTy; T:APTy)
(l:label)
(htlookup (htunwrap HT) l (codety G’ T)) →
(RegFileSubtype G G’) →
(WFInstrSeq HT G T (jd l))

| s jmp : (HT:HeapTy; G,G’:RegFileTy; T:APTy)
(r:Reg)
(mlookup ? ? G r (codety G’ T)) →
(RegFileSubtype G G’) →
(WFInstrSeq HT G T (jmp r))

| s ld : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; i:int)
(ol:(list Omega); il:(list initflag); t:Omega)
(mlookup ? ? G rs (tupty ol il)) →
(ListNth ? ol i t) →
(ListNth ? il i true) →
(mupdext ? ? G rd t G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (ld rd rs i) I))

| s mov : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; t:Omega)
(mlookup ? ? G rs t) →
(mupdext ? ? G rd t G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (mov rd rs) I))

| s movi : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd:Reg; i:int)
(mupdext ? ? G rd intty G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (movi rd i) I))

| s movl : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd:Reg; l:label; t,t’:Omega)
(htlookup (htunwrap HT) l t) →
(Subtype t t’) →
(mupdext ? ? G rd t’ G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (movl rd l) I))

| s st : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; i:int;

V,V’:(list initflag); Ts:(list Omega); t:Omega)

179

(mlookup ? ? G rd (tupty Ts V)) →
(mlookup ? ? G rs t) →
(ListNth ? Ts i t) →
(updatetupty V i V’) →
(mupdate ? ? G rd (tupty Ts V’) G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (st rd i rs) I))

| s unfold : (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; f :OmegaR; unf,rst:Omega)
(mlookup ? ? G rs rst) →
rst=(recty f) →
(RUnlift (RUnfold f))=unf →
(mupdext ? ? G rd unf G’) →
(WFInstrSeq HT G’ T I) →
(WFInstrSeq HT G T (iseq (unfold rd rs) I)).

Inductive WFWordValinitList
: HeapTy → (list WordVal) → (list Omega) → (list initflag) → Prop
:= wfwvilist0 : (HT:HeapTy)

(WFWordValinitList HT (nil ?) (nil ?) (nil ?))
| wfwvilist1 : (HT:HeapTy;

wl:(list WordVal); tl:(list Omega); il:(list initflag))
(w:WordVal; t:Omega; i:initflag)
(WFWordValinit HT w t i) →
(WFWordValinitList HT wl tl il) →
(WFWordValinitList HT (cons w wl) (cons t tl) (cons i il)).

Inductive WFHeapVal : HeapTy → HeapVal → Omega → Prop
:= tuple wf : (HT:HeapTy; wl:(list WordVal);

tl:(list Omega); il:(list initflag))
(WFWordValinitList HT wl tl il) →
(WFHeapVal HT (tuple wl) (tupty tl il))

| code wf : (HT:HeapTy; G:RegFileTy; I:InstrSeq; T:APTy)
(WFInstrSeq HT G T I) →
(WFHeapVal HT (code G T I) (codety G T)).

Inductive WFHeap : Heap → HeapTy → Prop
:= heap wf : (H:Heap; HT:HeapTy)

(EX s | (hsize (hunwrap H) s) ∧
(htsize (htunwrap HT) s) ∧
((n:label; h:HeapVal)

(hlookup (hunwrap H) n h) → (lt n s)) ∧

180

((n:label; t:Omega)
(htlookup (htunwrap HT) n t) → (lt n s)) ∧

((n:label) (lt n s) →
(EX h | (hlookup (hunwrap H) n h))) ∧

((n:label) (lt n s) →
(EX t | (htlookup (htunwrap HT) n t))) ∧

((n:label; h:HeapVal; t:Omega)
(hlookup (hunwrap H) n h) →
(htlookup (htunwrap HT) n t) →
(WFHeapVal HT h t)) ∧

(OrdHeap (hunwrap H))
) →
(WFHeap H HT).

Inductive WFap : HeapTy → AP → APTy → Prop
:= fresh wf : (HT:HeapTy; l:AP)

(htsize (htunwrap HT) l) →
(WFap HT l fresh)

| used wf : (HT:HeapTy; l:AP; n:nat; tl:(list Omega); ol:(list initflag))
n=(length tl) →
(htsize (htunwrap HT) (S l)) →
(WFWordVal HT (wl l) (tupty tl ol)) →
(WFap HT l (used n)).

Fixpoint stripWV [w:WordVal] : WordVal
:= Cases w of (wfold w’ t) ⇒ (stripWV w’)

| ⇒ w
end.

Inductive WFRegFile : HeapTy → RegFile → RegFileTy → Prop
:= regfile wf : (HT:HeapTy; R:RegFile; G:RegFileTy)

((r:Reg; t:Omega)
(mlookup ? ? G r t) →

(EX w | (mlookup ? ? R r w) ∧ (WFWordVal HT w t))) →

((r:Reg; v:WordVal; l:label; n:nat)
(mlookup ? ? R r v) →
(stripWV v)=(wl l) →
(htsize (htunwrap HT) n) →
(lt l n)) →

(WFRegFile HT R G).

(* Well-formed program *)

181

Inductive WFProgram : Program → Prop
:= program wf : (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;

l:AP; t:APTy; I:InstrSeq)
(WFHeap H HT) →
(WFRegFile HT R G) →
(WFap HT l t) →
(WFInstrSeq HT G t I) →
(EX l | (EX G’ | (EX T’ | (EX I’ | (EX n —

(hlookup (hunwrap H) l (code G’ T’ I’)) ∧
(ISubDepth I I’ n)))))) →

(WFProgram (H, (R, (l, I)))).

Soundness Proofs

Utility lemmas

Lemma regfile ext eq instr wf
: (I:InstrSeq; HT:HeapTy; G1,G2:RegFileTy; T:APTy)

((r:Reg; t:Omega) (mlookup ? ? G1 r t) → (mlookup ? ? G2 r t)) →
(WFInstrSeq HT G1 T I) →
(WFInstrSeq HT G2 T I).

Lemma wfwordval label lt heap size
: (H:Heap; HT:HeapTy; v:WordVal; l:label; t:Omega; n:nat)

(WFHeap H HT) → (WFWordVal HT v t) → (stripWV v)=(wl l) → (htsize (htunwrap HT)
n) → (lt l n).

Lemma regfile upd wf
: (H:Heap; HT:HeapTy; R,R’:RegFile; G,G’:(Map Reg Omega))

(rd:Reg; w:WordVal; t:Omega)
(WFHeap H HT) →
(WFRegFile HT R G) →
(WFWordVal HT w t) →
(mupdext ? ? R rd w R’) →
(mupdext ? ? G rd t G’) →
(WFRegFile HT R’ G’).

Lemma heap lookup not recty
: (H:Heap; HT:HeapTy; l:label; t:Omega; f :OmegaR)

(WFHeap H HT) →
(htlookup (htunwrap HT) l t) →
¬t=(recty f).

Lemma heap lookup not intty

182

: (H:Heap; HT:HeapTy; l:label; t:Omega)
(WFHeap H HT) →
(htlookup (htunwrap HT) l t) →
¬t=intty.

(* Canonical forms lemmas *)
Lemma can word forms rec

: (H:Heap; HT:HeapTy; w:WordVal; f :OmegaR)
(WFHeap H HT) →
(WFWordVal HT w (recty f)) →
(EX v | (EX t | w=(wfold v t))).

Lemma can word forms int
: (H:Heap; HT:HeapTy; w:WordVal; t:Omega)

(WFHeap H HT) →
(WFWordVal HT w t) →
(t=intty) →
(EX i | w=(wi i)).

Lemma can reg forms any
: (HT:HeapTy; R:RegFile; G:(Map Reg Omega);

r:Reg; t:Omega)
(WFRegFile HT R G) →
(mlookup Reg Omega G r t) →
(EX w | (mlookup Reg WordVal R r w)).

Lemma can reg forms tuple
: (HT:HeapTy; R:RegFile; G:RegFileTy;

r:Reg; tl:(list Omega); il:(list initflag))
(WFRegFile HT R G) →
(mlookup Reg Omega G r (tupty tl il)) →
(EX l | (mlookup ? ? R r (wl l))).

Lemma tupty lists length eq
: (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;

r:Reg; l:label; tl:(list Omega); il:(list initflag); V:(list WordVal))
(WFHeap H HT) →
(WFRegFile HT R G) →
(mlookup Reg Omega G r (tupty tl il)) →
(mlookup ? ? R r (wl l)) →
(hlookup (hunwrap H) l (tuple V)) →
(length V)=(length tl).

Lemma can heap forms reg tuple
: (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;

183

r:Reg; l:label; tl:(list Omega); il:(list initflag))
(WFHeap H HT) →
(WFRegFile HT R G) →
(mlookup ? ? G r (tupty tl il)) →
(mlookup ? ? R r (wl l)) →
(EX V | (hlookup (hunwrap H) l (tuple V))).

Lemma can heap forms code
: (HT:HeapTy; H:Heap; l:label; G:(Map Reg Omega); T:APTy)

(WFHeap H HT) →
(mlookup nat Omega (unwrapMap nat Omega HT) l (codety G T)) →
(EX I | (mlookup ? ? (unwrapMap ? ? H) l (code G T I))).

Lemma can heap forms code I
: (HT:HeapTy; h:HeapVal; t:Omega; G:RegFileTy; I:InstrSeq; T:APTy)

(WFHeapVal HT h t) →
t=(codety G T) →
h=(code G T I) →
(WFInstrSeq HT G T I).

Lemma can word forms code
: (H:Heap; HT:HeapTy; w:WordVal; G:RegFileTy; T:APTy)

(WFHeap H HT) →
(WFWordVal HT w (codety G T)) →
(EX l | w=(wl l) ∧

(EX I | (mlookup ? ? (unwrapMap ? ? H) l (code G T I)))).

Lemma wfwordval in reg
: (HT:HeapTy; R:RegFile; G:RegFileTy)

(r:Reg; w:WordVal; t:Omega)
(WFRegFile HT R G) →
(mlookup ? ? G r t) →
(mlookup ? ? R r w) →
(WFWordVal HT w t).

Lemma wfheapval in heap
: (H:Heap; HT:HeapTy; l:label; h:HeapVal; t:Omega)

(WFHeap H HT) →
(hlookup (hunwrap H) l h) →
(htlookup (htunwrap HT) l t) →
(WFHeapVal HT h t).

(* Reasoning about the heap *)

Lemma size notin wfheap

184

: (H:Heap; HT:HeapTy; h:(Map label HeapVal); wfh:(mWF ? ? h); l:label)
H=(wfmap label HeapVal h wfh) → (WFHeap H HT) → (msize ? ? h l) → (mnotindom ? ?

h l).

Lemma size notin wfheapty
: (H:Heap; HT:HeapTy; ht:(Map label Omega); wfht:(mWF ? ? ht); l:label)

HT=(wfmap label Omega ht wfht) → (WFHeap H HT) → (msize ? ? ht l) → (mnotindom ?
? ht l).

Lemma wfh ht size eq
: (h:(Map label HeapVal); wfh:(mWF ? ? h); ht:(Map label Omega); wfht:(mWF ? ? ht); l:nat)

(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) → (hsize h l) → (htsize ht l).

Lemma wfh h size eq
: (h:(Map label HeapVal); wfh:(mWF ? ? h); ht:(Map label Omega); wfht:(mWF ? ? ht); l:nat)

(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) → (htsize ht l) → (hsize h l).

Lemma makeUninitTupty len eq
: (n:nat; V:(list Omega)) n=(length V) → n=(length (makeUninitTupty V)).

Lemma makeUninitWF
: (HT:HeapTy; V:(list Omega)) (WFHeapVal HT (tuple (makeUninitTup V)) (tupty V (make-

UninitTupty V))).

Lemma reg tuple ex heaptype
: (ht:(Map label Omega); wfht:(mWF ? ? ht); R:RegFile; G:RegFileTy; r:Reg; tl:(list Omega);

il:(list initflag); l:label)
(WFRegFile (wfmap ? ? ht wfht) R G) →
(mlookup ? ? G r (tupty tl il)) →
(mlookup ? ? R r (wl l)) →
(EX s:Omega | (mlookup nat Omega ht l s) ∧ (Subtype s (tupty tl il))).

Heap extension lemmas
Lemma heap ext 6

: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);
ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))

(t:Omega; l:label)
(wv:WordVal; t’:Omega)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(WFWordVal (wfmap ? ? ht wfht) wv t’) →
(WFWordVal (wfmap ? ? ht’ wfht’) wv t’).

Lemma heap ext 7
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

185

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t:Omega; l:label)
(wv:WordVal; t’:Omega; b:initflag)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(WFWordValinit (wfmap ? ? ht wfht) wv t’ b) →
(WFWordValinit (wfmap ? ? ht’ wfht’) wv t’ b).

Lemma heap ext 4
: (I:InstrSeq)

(h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);
ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))

(t:Omega; l:label)
(R:RegFileTy; A:APTy)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(WFInstrSeq (wfmap ? ? ht wfht) R A I) →
(WFInstrSeq (wfmap ? ? ht’ wfht’) R A I).

Lemma heap ext 5 aux
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(wl:(list WordVal); tl:(list Omega); il:(list initflag))
(t:Omega; l:label)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(WFWordValinitList (wfmap ? ? ht wfht) wl tl il) →
(WFWordValinitList (wfmap ? ? ht’ wfht’) wl tl il).

Lemma heap ext 3
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(R,R’:RegFile; G,G’:(Map Reg Omega))
(rd:Reg; l:nat; tl:(list Omega); il:(list initflag))
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(WFRegFile (wfmap ? ? ht wfht) R G) →
(mupdext Reg WordVal R rd (wl l) R’) →
(mupdext Reg Omega G rd (tupty tl il) G’) →
(mextend nat Omega ht l (tupty tl il) ht’) →

186

(WFRegFile (wfmap ? ? ht’ wfht’) R’ G’).

Lemma heap ext 3ap
: (HT,HT’:HeapTy; a:AP; tl:(list Omega); il:(list initflag); n:nat)

(WFap HT a fresh) →
n=(length tl) →
(mextend nat Omega (unwrapMap nat Omega HT) a (tupty tl il)

(unwrapMap nat Omega HT’)) →
(WFap HT’ a (used n)).

Lemma heap ext 5
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(hv:HeapVal; t,t’:Omega; l:label)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(WFHeapVal (wfmap ? ? ht wfht) hv t’) →
(WFHeapVal (wfmap ? ? ht’ wfht’) hv t’).

Lemma heap ext 2
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(hv:HeapVal; t:Omega; l:label)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(hsize h l) →
(htextend ht l t ht’) →
(hextend h l hv h’) →
(WFHeapVal (wfmap ? ? ht’ wfht’) hv t) →
(WFHeap (wfmap ? ? h’ wfh’) (wfmap ? ? ht’ wfht’)).

Lemma heap ext 1
: (H:Heap; HT:HeapTy; ht:(Map label Omega); wfht:(mWF ? ? ht);

l:label; t:Omega)
HT=(wfmap label Omega ht wfht) →
(WFHeap H HT) →
(msize ? ? ht l) →
(EX ht’ | (EXT wfht’ | (EX HT’:HeapTy |

HT’=(wfmap label Omega ht’ wfht’) ∧
(mextend ? ? ht l t ht’)))).

Heap update lemmas
Lemma subtype update

: (i:int; il1,il1’,il0,il0’:(list initflag))

187

(SubtypeBList il1 il0) → (updatetupty il1 i il1’) → (updatetupty il0 i il0’) →
(SubtypeBList il1’ il0’).

Lemma subtypeb trans
: (b,a,c:initflag)(SubtypeB a b) → (SubtypeB b c) → (SubtypeB a c).

Lemma subtypeblist trans
: (il2,il1,il3:(list initflag))

(SubtypeBList il1 il2) → (SubtypeBList il2 il3) → (SubtypeBList il1 il3).

Lemma subtype trans
: (t1,t2,t3:Omega) (Subtype t1 t2) → (Subtype t2 t3) → (Subtype t1 t3).

Lemma heap upd 6
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(wv:WordVal; t’:Omega)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFWordVal (wfmap ? ? ht wfht) wv t’) →
(WFWordVal (wfmap ? ? ht’ wfht’) wv t’).

Lemma heap upd 7
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(wv:WordVal; t’:Omega; b:initflag)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFWordValinit (wfmap ? ? ht wfht) wv t’ b) →
(WFWordValinit (wfmap ? ? ht’ wfht’) wv t’ b).

Lemma heap upd 4
: (I:InstrSeq)

(h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);
ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))

(t,s:Omega; l:label)
(R:RegFileTy; A:APTy)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →

188

(Subtype t s) →
(htupdate ht l t ht’) →
(WFInstrSeq (wfmap ? ? ht wfht) R A I) →
(WFInstrSeq (wfmap ? ? ht’ wfht’) R A I).

Lemma heap upd 5 aux
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(wl:(list WordVal); tl:(list Omega); il:(list initflag))
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFWordValinitList (wfmap ? ? ht wfht) wl tl il) →
(WFWordValinitList (wfmap ? ? ht’ wfht’) wl tl il).

Lemma heap upd 3
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(R:RegFile; G:(Map Reg Omega))
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFRegFile (wfmap ? ? ht wfht) R G) →
(WFRegFile (wfmap ? ? ht’ wfht’) R G).

Lemma heap upd 3ap
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(a:AP; at:APTy)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFap (wfmap ? ? ht wfht) a at) →
(WFap (wfmap ? ? ht’ wfht’) a at).

Lemma heap upd 5
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

189

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(hv:HeapVal; t’:Omega)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(WFHeapVal (wfmap ? ? ht wfht) hv t’) →
(WFHeapVal (wfmap ? ? ht’ wfht’) hv t’).

Lemma ord updateheap ord
: (h,h’:HeapMap; l:label; hv:HeapVal)

(mupdate ? ? h l hv h’) →
(OrdHeap h) →
(OrdHeap h’).

Lemma heap upd 2
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’);

ht,ht’:(Map label Omega); wfht:(mWF ? ? ht); wfht’:(mWF ? ? ht’))
(t,s:Omega; l:label)
(hv:HeapVal)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htlookup ht l s) →
(Subtype t s) →
(htupdate ht l t ht’) →
(hupdate h l hv h’) →
(WFHeapVal (wfmap ? ? ht’ wfht’) hv t) →
(WFHeap (wfmap ? ? h’ wfh’) (wfmap ? ? ht’ wfht’)).

Cases of the FTAL progress theorem
Lemma progress add : (H:Heap; R:RegFile; I:InstrSeq; a:AP;

rd,rs,rs’:Reg)
(WFProgram (H, (R, (a, (iseq (add rd rs rs’) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (add rd rs rs’) I)))) P’)).

Lemma progress addi : (H:Heap; R:RegFile; I:InstrSeq; a:AP;
rd,rs:Reg; i:int)

(WFProgram (H, (R, (a, (iseq (addi rd rs i) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (addi rd rs i) I)))) P’)).

Lemma progress jmp : (H:Heap; R:RegFile; a:AP; r:Reg)
(WFProgram (H, (R, (a, (jmp r))))) →

190

(EX P’ |
(Eval (H, (R, (a, (jmp r)))) P’)).

Lemma progress jd : (H:Heap; R:RegFile; a:AP; l:label)
(WFProgram (H, (R, (a, (jd l))))) →
(EX P’ |

(Eval (H, (R, (a, (jd l)))) P’)).

Lemma progress ld : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd,rs:Reg; i:int)
(WFProgram (H, (R, (a, (iseq (ld rd rs i) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (ld rd rs i) I)))) P’)).

Lemma progress mov : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd,rs:Reg)
(WFProgram (H,(R,(a,(iseq (mov rd rs) I))))) →
(EX P’ —

(Eval (H,(R,(a,(iseq (mov rd rs) I)))) P’)).

Lemma progress movi : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd:Reg; i:int)
(WFProgram (H,(R,(a,(iseq (movi rd i) I))))) →
(EX P’ —

(Eval (H,(R,(a,(iseq (movi rd i) I)))) P’)).

Lemma progress movl : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd:Reg; l:label)
(WFProgram (H,(R,(a,(iseq (movl rd l) I))))) →
(EX P’ —

(Eval (H,(R,(a,(iseq (movl rd l) I)))) P’)).

Lemma progress unfold : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd,rs:Reg)
(WFProgram (H, (R, (a, (iseq (unfold rd rs) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (unfold rd rs) I)))) P’)).

Lemma progress fold : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd,rs:Reg; t:Omega)
(WFProgram (H, (R, (a, (iseq (fold rd t rs) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (fold rd t rs) I)))) P’)).

Lemma progress bgt : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rs,rt:Reg; l:label)

191

(WFProgram (H, (R, (a, (iseq (bgt rs rt l) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (bgt rs rt l) I)))) P’)).

Lemma progress bump : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(n:nat)
(WFProgram (H, (R, (a, (iseq (bump n) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (bump n) I)))) P’)).

Lemma progress alloc : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd:Reg; V:(list Omega))
(WFProgram (H, (R, (a, (iseq (alloc rd V) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (alloc rd V) I)))) P’)).

Lemma progress st : (H:Heap; R:RegFile; a:AP; I:InstrSeq)
(rd,rs:Reg; i:int)
(WFProgram (H, (R, (a, (iseq (st rd i rs) I))))) →
(EX P’ |

(Eval (H, (R, (a, (iseq (st rd i rs) I)))) P’)).

Cases of the FTAL preservation theorem
Lemma preserv add : (H:Heap; R:RegFile; I:InstrSeq; a:AP;

rd,rs,rs’:Reg; P’:Program)
(WFProgram (H, (R, (a, (iseq (add rd rs rs’) I))))) →
(Eval (H, (R, (a, (iseq (add rd rs rs’) I)))) P’) →
(WFProgram P’).

Lemma preserv addi : (H:Heap; R:RegFile; I:InstrSeq; a:AP;
rd,rs:Reg; i:int; P’:Program)

(WFProgram (H, (R, (a, (iseq (addi rd rs i) I))))) →
(Eval (H, (R, (a, (iseq (addi rd rs i) I)))) P’) →
(WFProgram P’).

Lemma preserv alloc : (H:Heap; R:RegFile; I:InstrSeq; a:AP;
rd:Reg; V:(list Omega); P’:Program)

(WFProgram (H, (R, (a, (iseq (alloc rd V) I))))) →
(Eval (H, (R, (a, (iseq (alloc rd V) I)))) P’) →
(WFProgram P’).

Lemma preserv bgt : (H:Heap; R:RegFile; I:InstrSeq; a:AP; P’:Program)
(rs,rt:Reg; l:label)
(WFProgram (H, (R, (a, (iseq (bgt rs rt l) I))))) →
(Eval (H, (R, (a, (iseq (bgt rs rt l) I)))) P’) →

192

(WFProgram P’).

Lemma preserv bump : (H:Heap; R:RegFile; I:InstrSeq; a:AP; n:nat; P’:Program)
(WFProgram (H, (R, (a, (iseq (bump n) I))))) →
(Eval (H, (R, (a, (iseq (bump n) I)))) P’) →
(WFProgram P’).

Lemma preserv fold : (H:Heap; R:RegFile; I:InstrSeq; a:AP; P’:Program)
(rd,rs:Reg; t:Omega)
(WFProgram (H, (R, (a, (iseq (fold rd t rs) I))))) →
(Eval (H, (R, (a, (iseq (fold rd t rs) I)))) P’) →
(WFProgram P’).

Lemma preserv jmp : (H:Heap; R:RegFile; a:AP; r:Reg; P’:Program)
(WFProgram (H, (R, (a, (jmp r))))) →
(Eval (H, (R, (a, (jmp r)))) P’) →
(WFProgram P’).

Lemma preserv jd : (H:Heap; R:RegFile; a:AP; l:label; P’:Program)
(WFProgram (H, (R, (a, (jd l))))) →
(Eval (H, (R, (a, (jd l)))) P’) →
(WFProgram P’).

Lemma preserv ld : (H:Heap; R:RegFile; I:InstrSeq; a:AP; P’:Program)
(rd,rs:Reg; i:int)
(WFProgram (H, (R, (a, (iseq (ld rd rs i) I))))) →
(Eval (H, (R, (a, (iseq (ld rd rs i) I)))) P’) →
(WFProgram P’).

Lemma preserv mov : (H:Heap; R:RegFile; a:AP; I:InstrSeq; P’:Program)
(rd,rs:Reg)
(WFProgram (H,(R,(a,(iseq (mov rd rs) I))))) →
(Eval (H,(R,(a,(iseq (mov rd rs) I)))) P’) →
(WFProgram P’).

Lemma preserv movi : (H:Heap; R:RegFile; a:AP; I:InstrSeq; P’:Program)
(rd:Reg; i:int)
(WFProgram (H,(R,(a,(iseq (movi rd i) I))))) →
(Eval (H,(R,(a,(iseq (movi rd i) I)))) P’) →
(WFProgram P’).

Lemma preserv movl : (H:Heap; R:RegFile; a:AP; I:InstrSeq; P’:Program)
(rd:Reg; l:label)
(WFProgram (H,(R,(a,(iseq (movl rd l) I))))) →
(Eval (H,(R,(a,(iseq (movl rd l) I)))) P’) →
(WFProgram P’).

193

Lemma preserv st aux2
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))

(ht:(Map label Omega); wfht:(mWF ? ? ht))
(R:RegFile; G:RegFileTy)
(rd,rs:Reg; i:int; l:label; w:WordVal; t:Omega)
(V,V’:(list WordVal); Ts:(list Omega);
il,V0,V’0:(list initflag))

(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(WFRegFile (wfmap ? ? ht wfht) R G) →
(mlookup ? ? R rd (wl l)) →
(mlookup ? ? R rs w) →
(mlookup ? ? h l (tuple V)) →
(updatetuple V i w V’) →
(mupdate ? ? h l (tuple V’) h’) →
(mlookup ? ? G rd (tupty Ts V0)) →
(mlookup ? ? G rs t) →
(ListNth ? Ts i t) →
(updatetupty V0 i V’0) →
(mlookup ? ? ht l (tupty Ts il)) →
(Subtype (tupty Ts il) (tupty Ts V0)) →
(EX ht’:(Map nat Omega) —

(EXT wfht’:(mWF nat Omega ht’) —
(EX il’ —

(mupdate nat Omega ht l (tupty Ts il’) ht’) ∧
(updatetupty il i il’) ∧
(Subtype (tupty Ts il’) (tupty Ts V’0)) ∧
(Subtype (tupty Ts il’) (tupty Ts il)) ∧
(WFHeapVal (wfmap ? ? ht’ wfht’) (tuple V’)

(tupty Ts il’))))).

Lemma preserv st : (H:Heap; R:RegFile; I:InstrSeq; a:AP;
rd,rs:Reg; i:int; P’:Program)

(WFProgram (H, (R, (a, (iseq (st rd i rs) I))))) →
(Eval (H, (R, (a, (iseq (st rd i rs) I)))) P’) →
(WFProgram P’).

Lemma preserv unfold : (H:Heap; R:RegFile; I:InstrSeq; a:AP; P’:Program)
(rd,rs:Reg)
(WFProgram (H, (R, (a, (iseq (unfold rd rs) I))))) →
(Eval (H, (R, (a, (iseq (unfold rd rs) I)))) P’) →
(WFProgram P’).

194

A.3 Translation to Machine State

The Safety Policy

Definition SP := [S:State] (let (M,T’)=S in (let (R,PC)=T’ in ˜(Dc (M PC))= ill)).

Definition Safe := [S:State] (n:nat)(SP (MultiStep n S)).

Translation Relations

(* The Layout function *)
Definition HV size : HeapVal → nat

:= [hv] Cases hv of (tuple V) ⇒ (length V)
| (code G T I’) ⇒ (lenInstrSeq I’)

end.

Fixpoint Layout aux [H:(Map label HeapVal)] : label → Word
:= Cases H of mempty ⇒ ([l’:label] O)

| (melem l h H’) ⇒ [l’:label] (if (blt nat l l’)
then (plus (Layout aux H’ l’) (HV size h))
else (Layout aux H’ l’))

end.

Definition Layout : Heap → label → Word := [H] (Layout aux (hunwrap H)).

Syntactic Definition LayoutF := (label → Word).

(* Register translations *)
Require translate ftal aux.

Inductive TrWordVal : LayoutF → WordVal → Word → Prop
:= trwv label : (L:LayoutF; l:label) (TrWordVal L (wl l) (L l))
| trwv int : (L:LayoutF; i:int) (TrWordVal L (wi i) i)
| trwv uninit : (L:LayoutF; t:Omega; l:label) (TrWordVal L (wuninit t) l)
| trwv fold : (L:LayoutF; v:WordVal; t:Omega; w:Word)

(TrWordVal L v w) → (TrWordVal L (wfold v t) w).

Inductive TrWordValList : LayoutF → (list WordVal) → Mem → Word → Prop
:= trwvl nil : (L:LayoutF; M:Mem; l:Word)

(TrWordValList L (nil ?) M l)
| trwvl cons : (L:LayoutF; v:WordVal; V:(list WordVal); M:Mem; w,l:Word)

(TrWordVal L v w) →
(M l)=w →

(TrWordValList L V M (S l)) →
(TrWordValList L (cons v V) M l).

Inductive TrInstr : LayoutF → Instr → Instr → Prop

195

:= tri add : (L:LayoutF; rd,rs,rt:Reg; rd, rs, rt: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrRegF rt)= rt →
(TrInstr L (add rd rs rt) (add rd rs rt))

| tri addi : (L:LayoutF; rd,rs:Reg; rd, rs: Reg; i:int)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (addi rd rs i) (addi rd rs i))

| tri alloc : (L:LayoutF; rd:Reg; rd: Reg; Ts:(list Omega))
(TrRegF rd)= rd →

(TrInstr L (alloc rd Ts) (addi rd r31 O))
| tri bgt : (L:LayoutF; rs,rt:Reg; rs, rt: Reg; l:label)

(TrRegF rs)= rs →
(TrRegF rt)= rt →
(TrInstr L (bgt rs rt l) (bgt rs rt (L l)))

| tri bump : (L:LayoutF; i:int)
(TrInstr L (bump i) (addi r31 r31 i))

| tri fold : (L:LayoutF; rd,rs:Reg; t:Omega; rd, rs: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (fold rd t rs) (addi rd rs O))

| tri ld : (L:LayoutF; rd,rs:Reg; i:int; rd, rs: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (ld rd rs i) (ld rd rs i))

| tri mov : (L:LayoutF; rd,rs:Reg; rd, rs: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (mov rd rs) (addi rd rs O))

| tri movi : (L:LayoutF; r:Reg; r: Reg; i:int)
(TrRegF r)= r →
(TrInstr L (movi r i) (movi r i))

| tri movl : (L:LayoutF; r:Reg; r: Reg; l:label)
(TrRegF r)= r →
(TrInstr L (movl r l) (movi r (L l)))

| tri st : (L:LayoutF; rd,rs:Reg; i:int; rd, rs: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (st rd i rs) (st rd i rs))

196

| tri unfold : (L:LayoutF; rd,rs:Reg; rd, rs: Reg)
(TrRegF rd)= rd →

(TrRegF rs)= rs →
(TrInstr L (unfold rd rs) (addi rd rs O)).

Inductive TrInstrSeq : LayoutF → InstrSeq → Mem → Word → Prop
:= tris iseq : (L:LayoutF; i:Instr; i: Instr; I:InstrSeq; M:Mem; l:Word)

(TrInstr L i i) →
(Dc (M l)) = i →
(TrInstrSeq L I M (S l)) →
(TrInstrSeq L (iseq i I) M l)

| tris jd : (L:LayoutF; l:label; M:Mem; w:Word)
(Dc (M w)) = (jd (L l)) →
(TrInstrSeq L (jd l) M w)

| tris jmp : (L:LayoutF; r:Reg; r: Reg; M:Mem; w:Word)
(TrRegF r)= r →
(Dc (M w)) = (jmp r) →
(TrInstrSeq L (jmp r) M w).

Inductive TrHeapVal : LayoutF → HeapVal → Mem → Word → Prop
:= trhv tuple : (L:LayoutF; V:(list WordVal); M:Mem; l:Word)

(TrWordValList L V M l) →
(TrHeapVal L (tuple V) M l)

| trhv code : (L:LayoutF; G:RegFileTy; T:APTy; I:InstrSeq; M:Mem; l:Word)
(TrInstrSeq L I M l) →
(TrHeapVal L (code G T I) M l).

Inductive TrHeap : LayoutF → Heap → Mem → Prop
:= trheap : (L:LayoutF; H:Heap; s:nat; M:Mem)

(hsize (hunwrap H) s) →
((n:nat; h:HeapVal)

(hlookup (hunwrap H) n h) →
(TrHeapVal L h M (L n))) →

(TrHeap L H M).

Inductive TrRegFile : LayoutF → RegFile → RegFile → Prop
:= trregfile : (L:LayoutF; R:RegFile; R: RegFile)

((r:Reg; r: Reg; v:WordVal)
(mlookup ? ? R r v) →
(TrRegF r)= r →
(TrWordVal L v (R r))) →

(TrRegFile L R R).

Inductive TrAP : LayoutF → AP → RegFile → Prop

197

:= trap : (L:LayoutF; A:AP; R: RegFile)
(R r31)=(L A) → (TrAP L A R)

.

Inductive TrProgram : Program → State → Prop
:= trprogram : (H:Heap; R:RegFile; A:AP; I:InstrSeq;

M:Mem; R: RegFile; pc:Word; L:LayoutF)
L=(Layout H) →
(TrHeap L H M) →
(TrRegFile L R R) →
(TrAP L A R) →
(EX l | (EX G | (EX T | (EX I’ | (EX n |

(hlookup (hunwrap H) l (code G T I’)) ∧
(ISubDepth I I’ n) ∧
(TrInstrSeq L I’ M (L l)) ∧
(plus (L l) n)=pc))))) →

(TrProgram (H,(R,(A,I))) (M,(R,pc))).

FPCC Proofs

The global invariant
Definition Inv := [S:State] (EX P:Program | (WFProgram P) ∧ (TrProgram P S)).

FPCC Progress theorem

Theorem Progress : (S:State) (Inv S) → (SP S).

Cases of the FPCC Preservation theorem
Lemma Preservation add

: (S:State; H:Heap; R:RegFile; a:AP;
rd,rs,rs’:Reg; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (add rd rs rs’) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation addi
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; i:int; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (addi rd rs i) I)))) →

198

(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma heap size eq label
: (h:(Map label HeapVal); wfh:(mWF ? ? h))

(ht:(Map label Omega); wfht:(mWF ? ? ht))
(l:label)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(msize ? ? h (S l)) →
(EX hv | (EX h’ | h=(melem ? ? l hv h’))).

Lemma heap label eq size
: (l:label; hv:HeapVal; h:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? (melem ? ? l hv h)); G,G’:HeapTy)
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? (melem ? ? l hv h) wf’) G’) →
(msize ? ? h l).

Lemma tr extend layout aux eq preserv
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))

(l:label; hv:HeapVal)
h’=(melem ? ? l hv h) →
(msize ? ? h l) →
(Layout aux h l)=(Layout aux h’ l).

Lemma tr extend layout aux preserv
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))

(l,n:label; hv:HeapVal)
h’=(melem ? ? l hv h) →
(msize ? ? h l) →
(lt n l) →
(Layout aux h n)=(Layout aux h’ n).

Lemma tr extend layout preserv
: (h,h’:(Map label HeapVal); wfh:(mWF ? ? h); wfh’:(mWF ? ? h’))

(l,n:label; hv:HeapVal)
(mextend ? ? h l hv h’) →
(msize ? ? h l) →
(lt n l) →
(Layout (wfmap ? ? h’ wfh’) n)=(Layout (wfmap ? ? h wfh) n).

Lemma tr extend heap uninitwordlist

199

: (Ts:(list Omega); H:Heap; M:Mem; l:label)
(TrWordValList (Layout H) (makeUninitTup Ts) M l).

Lemma tr extend instr preserv
: (i:Instr; I:InstrSeq; R:RegFileTy; T:APTy;

i: Instr; l:label; Ts:(list Omega);
h,h’:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(G,G’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(WFInstrSeq G R T (iseq i I)) →
(TrInstr (Layout aux h) i i) →
(TrInstr (Layout aux h’) i i).

Lemma tr extend instrseq preserv
: (i:InstrSeq; M:Mem; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(m:RegFileTy; a:APTy)
(D:Word)
(G,G’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(WFInstrSeq G m a i) →
(TrInstrSeq (Layout aux h) i M D) →
(TrInstrSeq (Layout aux h’) i M D).

Lemma wordval strip not wfold
: (v,v’:WordVal) v’=(stripWV v) → ˜(EX w | (EX t | v’=(wfold w t))).

Lemma tr wordval strip
: (L:LayoutF; v:WordVal; w:Word)

(TrWordVal L v w) →
(EX v’ | v’=(stripWV v) ∧ (TrWordVal L v’ w)).

Lemma tr wordval strip alt
: (L:LayoutF; v:WordVal; w:Word)

(TrWordVal L v w) →
(TrWordVal L (stripWV v) w).

Lemma tr strip wordval
: (L:LayoutF; v,v’:WordVal; w:Word)

v’=(stripWV v) →

200

(TrWordVal L v’ w) →
(TrWordVal L v w).

Lemma tr extend wordval preserv aux
: (w:Word; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(wv’,wv:WordVal)
(HT,HT’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) HT) →
(WFHeap (wfmap ? ? h’ wf’) HT’) →
wv’=(stripWV wv) →
((l,n:nat) (stripWV wv)=(wl l) → (msize ? ? (htunwrap HT) n) → (lt l n))
→

(TrWordVal (Layout aux h) wv’ w) →
(TrWordVal (Layout aux h’) wv’ w).

Lemma tr extend wordvali preserv
: (w:Word; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(wv:WordVal; t:Omega; i:initflag)
(G,G’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(WFWordValinit G wv t i) →
(TrWordVal (Layout aux h) wv w) →
(TrWordVal (Layout aux h’) wv w).

Lemma tr extend wordvallist preserv
: (L:(list WordVal); tl:(list Omega); il:(list bool))

(M:Mem; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))
(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(D:Word)
(G,G’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(WFWordValinitList G L tl il) →
(TrWordValList (Layout aux h) L M D) →
(TrWordValList (Layout aux h’) L M D).

Lemma tr extend heapval preserv aux

201

: (M:Mem; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))
(wf :(mWF ? ? h); wf’:(mWF ? ? h’))
(n:nat; hv:HeapVal; t:Omega)
(G,G’:HeapTy)
h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(WFHeapVal G hv t) →
(lt n l) →
(TrHeapVal (Layout aux h) hv M (Layout aux h n)) →
(TrHeapVal (Layout aux h’) hv M (Layout aux h’ n)).

Lemma tr extend heapval preserv
: (M:Mem; l:label; Ts:(list Omega))

(H,H’:Heap; G,G’:HeapTy)
(n:nat; hv:HeapVal; t:Omega)
(WFHeap H G) →
(WFHeap H’ G’) →
(hextend (hunwrap H) l (tuple (makeUninitTup Ts)) (hunwrap H’)) →
(WFHeapVal G hv t) →
(lt n l) →
(TrHeapVal (Layout H) hv M (Layout H n)) →
(TrHeapVal (Layout H’) hv M (Layout H’ n)).

Lemma tr heap extend emptytup aux
: (M:Mem; l:label; Ts:(list Omega); h,h’:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? h’);
wf”:(mWF ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h));
G,G’:HeapTy)

h’=(melem ? ? l (tuple (makeUninitTup Ts)) h) →
(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? h’ wf’) G’) →
(TrHeap (Layout (wfmap ? ? h wf)) (wfmap ? ? h wf) M) →
(TrHeap (Layout (wfmap ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h) wf”)) (wfmap ? ?

(melem ? ? l (tuple (makeUninitTup Ts)) h) wf”) M) →
(TrHeap (Layout (wfmap ? ? h’ wf’)) (wfmap ? ? h’ wf’) M).

Lemma tr heap extend emptytup
: (M:Mem; l:label; Ts:(list Omega); h:(Map label HeapVal))

(wf :(mWF ? ? h); wf’:(mWF ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h));
G,G’:HeapTy)

(WFHeap (wfmap ? ? h wf) G) →
(WFHeap (wfmap ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h) wf’) G’) →

202

(TrHeap (Layout (wfmap ? ? h wf)) (wfmap ? ? h wf) M) →
(TrHeap (Layout (wfmap ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h) wf’))

(wfmap ? ? (melem ? ? l (tuple (makeUninitTup Ts)) h) wf’) M).

Lemma heaplookup wfheapval
: (H:Heap; HT:HeapTy; l:nat; h:HeapVal)

(WFHeap H HT) →
(hlookup (hunwrap H) l h) →
(EX t | (WFHeapVal HT h t)).

Lemma Preservation alloc
: (S:State; H:Heap; R:RegFile; a:AP;

rd:Reg; Ts:(list Omega); I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (alloc rd Ts) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation bgt
: (S:State; H:Heap; R:RegFile; a:AP;

rs,rt:Reg; l:label; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (bgt rs rt l) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma wf wordlist len eq
: (HT:HeapTy; V:(list WordVal); tl:(list Omega); ol:(list initflag))

(WFWordValinitList HT V tl ol) →
(length V)=(length tl).

Lemma wf tuple tupty len eq
: (HT:HeapTy; V:(list WordVal); tl:(list Omega); ol:(list initflag))

(WFHeapVal HT (tuple V) (tupty tl ol)) →
(length V)=(length tl).

Lemma layout gt eq
: (h:(Map label HeapVal); wfh:(mWF ? ? h); a:label)

((b:label) (mindom ? ? h b) → (lt b a)) →

203

(Layout aux h a)=(Layout aux h (S a)).

Lemma wfheap next mindom imp lt
: (l,a,b:label; hv:HeapVal; h,H:(Map label HeapVal); wfh:(mWF ? ? H))

(HT:HeapTy)
(WFHeap (wfmap ? ? H wfh) HT) →
H=(melem ? ? l hv h) →
(msize ? ? h a) →
(mindom ? ? h b) → (lt b a).

Lemma wfh h size eq
: (h:(Map label HeapVal); wfh:(mWF ? ? h);

ht:(Map label Omega); wfht:(mWF ? ? ht); l:nat)
(WFHeap (wfmap ? ? h wfh) (wfmap ? ? ht wfht)) →
(htsize (htunwrap (wfmap ? ? ht wfht)) l) →
(hsize (hunwrap (wfmap ? ? h wfh)) l).

Lemma bump aux
: (H:Heap; HT:HeapTy; a,n:nat; w:Word; tl:(list Omega); ol:(list bool))

(WFHeap H HT) →
(htsize (htunwrap HT) (S a)) →
(Layout H a)=w →

(WFWordVal HT (wl a) (tupty tl ol)) →
n=(length tl) →
(Layout H (S a))=(plus w n).

Lemma Preservation bump
: (S:State; H:Heap; R:RegFile; a:AP;

i:nat; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (bump i) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation fold
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; t:Omega; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (fold rd t rs) I)))) →
(WFProgram P) →
(TrProgram P S) →

204

(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation jmp
: (St:State; H:Heap; R:RegFile; a:AP; r:Reg;

P,P’:Program)
P = (H,(R,(a,(jmp r)))) →
(WFProgram P) →
(TrProgram P St) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step St)).

Lemma Preservation jd
: (St:State; H:Heap; R:RegFile; a:AP; l:label;

P,P’:Program)
P = (H,(R,(a,(jd l)))) →
(WFProgram P) →
(TrProgram P St) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step St)).

Lemma trwordvallist i wordval
: (L:LayoutF; M:Mem; V:(list WordVal); i:int; v:WordVal; w:Word)

(TrWordValList L V M w) →
(ListNth ? V i v) →
(TrWordVal L v (M (plus w i))).

Lemma Preservation ld
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; i:int; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (ld rd rs i) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation mov
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; I:InstrSeq;

205

P,P’:Program)
P = (H,(R,(a,(iseq (mov rd rs) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation movi
: (S:State; H:Heap; R:RegFile; a:AP;

rd:Reg; i:int; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (movi rd i) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation movl
: (S:State; H:Heap; R:RegFile; a:AP;

r:Reg; l:label; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (movl r l) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma tr update layout preserv
: (h,h’:(Map label HeapVal); l:label; hv,hv’:HeapVal)

(mlookup ? ? h l hv) →
(mupdate ? ? h l hv’ h’) →
(HV size hv)=(HV size hv’) →
(Layout aux h)=(Layout aux h’).

Lemma layout aux top label plus nonoverlap
: (s,l:nat; h:HeapMap; hv:HeapVal)

(mWF ? ? h) → (OrdHeap h) →
(msize ? ? h (S s)) →
(mlookup ? ? h l hv) →
(lt l s) →

206

(le (plus (Layout aux h l) (HV size hv)) (Layout aux h s)).

Lemma layout aux label plus nonoverlap
: (h:HeapMap; l,l’:label; hv:HeapVal)

(mWF ? ? h) → (OrdHeap h) →
(mlookup ? ? h l hv) →
(mindom ? ? h l’) →
(lt l l’) →
(le (plus (Layout aux h l) (HV size hv)) (Layout aux h l’)).

Lemma layout non overlap
: (L:LayoutF; H:Heap; HT:HeapTy)

(l,l’:label; hv,hv’:HeapVal)
(WFHeap H HT) →
L=(Layout H) →
(hlookup (hunwrap H) l hv) →
(hlookup (hunwrap H) l’ hv’) →
¬l=l’ →
(le (plus (L l) (HV size hv)) (L l’))
∨ (le (plus (L l’) (HV size hv’)) (L l)).

Lemma tr update wordvallist preserv
: (L:LayoutF; M:Mem; l’:Word; w:Word)

(V:(list WordVal))
(l:Word)
(le (plus l (length V)) l’) ∨ (lt l’ l) →
(TrWordValList L V M l) →
(TrWordValList L V (updatemem M l’ w) l).

Lemma tr update instrseq preserv
: (L:LayoutF; M:Mem; l’:Word; w:Word)

(IS:InstrSeq)
(l:Word)
(le (plus l (lenInstrSeq IS)) l’) ∨ (lt l’ l) →
(TrInstrSeq L IS M l) →
(TrInstrSeq L IS (updatemem M l’ w) l).

Lemma Preservation st
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; i:int; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (st rd i rs) I)))) →
(WFProgram P) →
(TrProgram P S) →

207

(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

Lemma Preservation unfold
: (S:State; H:Heap; R:RegFile; a:AP;

rd,rs:Reg; I:InstrSeq;
P,P’:Program)

P = (H,(R,(a,(iseq (unfold rd rs) I)))) →
(WFProgram P) →
(TrProgram P S) →
(Eval P P’) →
(WFProgram P’) →
(TrProgram P’ (Step S)).

FPCC Preservation theorem (complete)

Theorem Preservation : (S:State) (Inv S) → (Inv (Step S)).

FPCC Safety

Theorem Safety aux : (S:State) (n:nat) (Inv S) → (Inv (MultiStep n S)).

Theorem Safety : (S:State) (Inv S) → (Safe S).

208

Appendix B

Coq Files for Region-Based TAL and

Runtime System

This chapter lists the Coq code for the system described in Chapter 5 of this dissertation.

Proofs of some smaller, tedious lemmas in the translation have not yet been completed.

These mainly involve straightforward reasoning about updates on memory and machine

state.

B.1 The CAP specification layer

Definitions

Definition addr := word.
Definition pred := state → Prop.
Definition cdspec := word → optT (prodT nat pred).
Definition cmdlist := list cmd.
Definition wordlist := list word.

Fixpoint flatten (Cs : cmdlist) (M : mem) (pc : addr) {struct Cs} : Prop :=
match Cs with
| nil ⇒ True
| c :: Cs’ ⇒ Dc (M pc) = c ∧ flatten Cs’ M (S pc)
end.

Definition iscodearea (Ct : cdspec) (w : addr) (n : word) : Prop :=
∃ P, (∃ f, (∃ s, (∃ m, Ct f = someT (pairT s P) ∧ w + n ≤ f + s ∧ w = f + m))).

209

Definition curmem (St : state) := let (X, pc):=St in let (M,R):=X in M.
Definition currf (St : state) := let (X, pc):=St in let (M,R):=X in R.
Definition curpc (St : state) := let (X, pc):=St in let (M,R):=X in pc.
Definition curcmd (St : state) := Dc (curmem St (curpc St)).
Definition curcmdp (St : state) (c:cmd) := Dc (curmem St (curpc St)) = c.

Inference rules

Section CAPRules.

Variable SP : pred.

(* Well-formed command sequences *)
Inductive WFCapCmds : cdspec → pred → cmdlist → Prop :=

| wfcapcmd :
∀ (Ct : cdspec) (P : pred) c Cs rd rs rt i,
c = add rd rs rt ∨
c = addi rd rs i ∨
c = sub rd rs rt ∨
c = subi rd rs i ∨
c = mov rd rs ∨ c = movi rd i ∨ c = ld rd rs i →
(∀ St : state, P St → curcmdp St c → SP St) →
(∀ St : state,
P St →
curcmdp St c → ∃ Q : pred, Q (Step St) ∧ WFCapCmds Ct Q Cs) →

WFCapCmds Ct P (c :: Cs)
| wfcapst :

∀ (Ct : cdspec) (P : pred) Cs rd rs i,
let c := st rd i rs in
(∀ St : state,
P St → curcmdp St c →¬ iscodearea Ct (currf St rd + i) 1) →

(∀ St : state, P St → curcmdp St c → SP St) →
(∀ St : state,
P St →
curcmdp St c → ∃ Q : pred, Q (Step St) ∧ WFCapCmds Ct Q Cs) →

WFCapCmds Ct P (c :: Cs)
| wfcapbgt :

∀ (Ct : cdspec) (P : pred) Cs rs rt f,
let c := bgt rs rt f in
(∀ St : state, P St → curcmdp St c → SP St) →
(∀ St : state,
P St →

210

curcmdp St c →
currf St rs ¿ currf St rt →
∃ n, (∃ R, Ct f = someT (pairT n R) ∧ R (Step St))) →

(∀ St : state,
P St →
curcmdp St c →
currf St rs ≤ currf St rt →
∃ Q : pred, Q (Step St) ∧ WFCapCmds Ct Q Cs) →

WFCapCmds Ct P (c :: Cs)
| wfcapbgti :

∀ (Ct : cdspec) (P : pred) Cs rs i f,
let c := bgti rs i f in
(∀ St : state, P St → curcmdp St c → SP St) →
(∀ St : state,
P St →
curcmdp St c →
currf St rs ≤ i → ∃ Q : pred, Q (Step St) ∧ WFCapCmds Ct Q Cs) →

(∀ St : state,
P St →
curcmdp St c →
currf St rs ¿ i →
∃ n, (∃ R, Ct f = someT (pairT n R) ∧ R (Step St))) →

WFCapCmds Ct P (c :: Cs)
| wfcapjd :

∀ (Ct : cdspec) (P : pred) f,
(∀ St : state, P St → curcmdp St (jd f) → SP St) →
(∀ St : state,
P St →
curcmdp St (jd f) →
∃ n, (∃ Q, Ct f = someT (pairT n Q) ∧ Q (Step St))) →

WFCapCmds Ct P (jd f :: nil)
| wfcapjmp :

∀ (Ct : cdspec) (P : pred) r,
(∀ St : state, P St → curcmdp St (jmp r) → SP St) →
(∀ St : state,
P St →
curcmdp St (jmp r) →
∃ n,

(∃ Q, Ct (currf St r) = someT (pairT n Q) ∧ Q (Step St))) →
WFCapCmds Ct P (jmp r :: nil).

211

(* Well-formed code specification *)
Definition WFCapcdspec (M : mem) (Ct : cdspec) :

Prop :=
∀ f n P,
Ct f = someT (pairT n P) →
∃ Cs, flatten Cs M f ∧ length Cs = n ∧ WFCapCmds Ct P Cs.

(* Well-formed machine state *)
Inductive WFCapstate : state → Prop :=

wfcapstate :
∀ M R pc Ct Cs P,

WFCapcdspec M Ct →
flatten Cs M pc →
WFCapCmds Ct P Cs →
P (M, R, pc) →
iscodearea Ct pc (length Cs) →
WFCapstate (M, R, pc).

Properties of the CAP system

Lemma iscodearea n Sn :
∀ Ct f n, iscodearea Ct f (S n) → iscodearea Ct (S f) n.

Lemma le Sm 1 : ∀ f x l, S (f + x) ≤ l → S f ≤ l.

Lemma flatten noncodeupd :
∀ M Ct Cs f x w,
flatten Cs M f →
iscodearea Ct f (length Cs) →
¬ iscodearea Ct x 1 → flatten Cs (updatemem M x w) f.

Lemma WFCapcdspec noncodeupd :
∀ M Ct x w,
WFCapcdspec M Ct →¬ iscodearea Ct x 1 → WFCapcdspec (updatemem M x w) Ct.

Lemma CapPreserv : ∀ St, WFCapstate St → WFCapstate (Step St).

Lemma WFCapstate SP : ∀ St, WFCapstate St → SP St.

End CAPRules.

Definitions and proofs for FPCC package production

(* Definition of safety *)
Definition Safe (St : state) (SP : pred) := ∀ n, SP (MultiStep n St).

212

(* The most basic safety policy *)
Definition SPbase (St : state) := ¬ curcmdp St ill.

(* CAP well-formedness implies basic safety policy *)
Lemma WFCap SPbase : ∀ SP St, WFCapstate SP St → SPbase St.

Lemma WFCap SPadd :
∀ (PA SPadd : pred) St,
WFCapstate PA St → (∀ St, PA St → SPadd St) → SPbase St ∧ SPadd St.

Lemma CapPreservMulti :
∀ n (SP : pred) St, WFCapstate SP St → WFCapstate SP (MultiStep n St).

(* CAP well-formedness implies FPCC Safety *)
Theorem WFCap Safe :
∀ (PA SPadd : pred) St,
WFCapstate PA St →
(∀ St, PA St → SPadd St) → Safe St (fun S ⇒ SPbase S ∧ SPadd S).

B.2 RgnTAL Syntax

Regions

(* Region identifiers are identified with integers *)
Definition rgn : Set := nat.

(* A decidable equality on region identifiers *)
Definition beq rgn : rgn → rgn → bool := beq nat.

(* Properties of the equality *)
Definition beq rgn refl : ∀ p, beq rgn p p = true

:= fun p ⇒ sym eq (beq nat refl p).
Definition beq rgn neq : ∀ p p’, p6=p’ → beq rgn p p’ = false

:= fun p p’ H ⇒ sym eq (natutil.beq neq false p p’ H).
Hint Immediate beq rgn refl.

Capabilities

(* Multiplicities are none, unique, or multiple *)
Inductive accap : Set :=

| noC : accap | uniC : accap | mulC : accap.

Definition beq accap : accap → accap → bool
:= fun c1 c2 ⇒ match (c1,c2) with

| (noC,noC) ⇒ true

213

| (uniC,uniC) ⇒ true
| (mulC,mulC) ⇒ true
| ⇒ false

end.

(* A set of capabilities is implemented as a (partial) function from region identifiers to multiplicities
*)
Definition capset := rgn → accap.

(* These are syntactic sugar for the Capability Language constructs of Crary, Walker, et al. *)
Definition nullcap : capset := fun r ⇒ noC.
Definition uniqcap : rgn → capset

:= fun rk r ⇒ if (beq rgn r rk) then uniC else noC.
Definition multcap : rgn → capset

:= fun rk r ⇒ if (beq rgn r rk) then mulC else noC.
Definition disjcap : capset → capset → Prop :=

fun A1 A2 ⇒ ∀ p, (A1 p = noC) ∨ (A2 p = noC).
Definition pluscap : ∀ (A1 A2:capset), (disjcap A1 A2) → capset :=

fun A1 A2 D r ⇒
if (beq accap (A1 r) noC) then (A2 r) else

if (beq accap (A2 r) noC) then (A1 r) else noC.
Definition barcap : capset → capset

:= fun A r ⇒ match (A r) with uniC ⇒ mulC | ⇒ (A r) end.

Notation ”A ./ B” := (disjcap A B) (at level 0).

Notation ”A ⊕ B “ C” := (pluscap A B C) (at level 0).

Registers and labels

Definition label := nat.

Definition beq label := beq nat.
Definition beq label neq := natutil.beq neq false.
Definition beq label refl := beq nat refl.
Hint Immediate beq label refl.

Inductive regt : Set :=
| r0 : regt | r1 : regt | r2 : regt | r3 : regt
| r4 : regt | r5 : regt | r6 : regt | r7 : regt.

Load talreg.

Definition beq regt refl := beq regt true id.
Definition beq regt neq := beq regt neq false.
Hint Immediate beq regt refl.

214

Types

(* Types with free variables (tracked deBruijn style) *)
Inductive omegaV : nat → Set :=

| tvvar : ∀ i, omegaV (S i)
| tvlift : ∀ i, omegaV i → omegaV (S i)

| tvint : omegaV 0
| tvhandle : rgn → omegaV 0
| tvpair : ∀ i, omegaV i → omegaV i → rgn → omegaV i
| tvcode : ∀ i, capset → (regt → omegaV i) → omegaV i

| tvabsr : ∀ i, (rgn → omegaV i) → omegaV i
| tvabsc : ∀ i, (capset → omegaV i) → omegaV i
| tvabscb : ∀ i, (capset → omegaV i) → capset → omegaV i
| tvabscd : ∀ i, ∀ (c1 c2:capset), ((c1 ./ c2) → omegaV i) → omegaV i
| tvabst : ∀ i, omegaV (S i) → omegaV i
| tvrec : ∀ i, omegaV (S i) → omegaV i.

(* Top-level types *)
Inductive omega : Set :=

| tint : omega
| thandle : rgn → omega
| tpair : omega → omega → rgn → omega
| tcode : capset → (regt → omega) → omega
| tabsr : (rgn → omega) → omega
| tabsc : (capset → omega) → omega
| tabscb : (capset → omega) → capset → omega
| tabscd : ∀ (c1 c2:capset), ((c1 ./ c2) → omega) → omega
| tabst : (omegaV 1) → omega
| trec : (omegaV 1) → omega.

(* Utility definitions for reasoning about equality *)
Definition myfequal

: ∀ (A B : Type) (f : A → B) (x y : A), x = y → f x = f y

Definition myeqaddS : ∀ n m, S n = S m → n = m.

Definition O S set : ∀ (A:Set) j, 0=S j → A.

(* Definition of substitution for deBruijn representation *)
Fixpoint subst aux (i:nat) (t:omegaV i) {struct t}

: ∀ j, i=(S j) → omegaV j → omegaV j
:= match

t as X in (omegaV i)
return (∀ j (p:i=S j) (e’:omegaV j), omegaV j) with

215

| tvvar n ⇒ fun j e’ ⇒ e’
| tvlift n t’ ⇒ fun j (p:S n=S j) ⇒

eq rec n t’ j (myeqaddS n j p)
| tvint ⇒ fun j (p:0=S j) ⇒ O S set j p
| tvhandle ⇒ fun j (p:0=S j) ⇒ O S set j p
| tvpair n t1 t2 p’

⇒ fun j (p:n=S j) e’ ⇒
tvpair j (subst aux n t1 j p e’)

(subst aux n t2 j p e’) p’
| tvcode n A G ⇒ fun j (p:n=S j) e’ ⇒

tvcode j A
(fun r ⇒ (subst aux n (G r) j p e’))

| tvabsr n Fr ⇒ fun j (p:n=S j) e’ ⇒
tvabsr j

(fun p’ ⇒ (subst aux n (Fr p’) j p e’))
| tvabsc n Fc ⇒ fun j (p:n=S j) e’ ⇒

tvabsc j
(fun c ⇒ (subst aux n (Fc c) j p e’))

| tvabscb n Fc A ⇒ fun j (p:n=S j) e’ ⇒
tvabscb j

(fun c ⇒ (subst aux n (Fc c) j p e’)) A
| tvabscd n c1 c2 Fcd ⇒ fun j (p:n=S j) e’ ⇒

tvabscd j c1 c2
(fun D ⇒

(subst aux n (Fcd D) j p e’))
| tvabst n t’ ⇒ fun j (p:n=S j) e’ ⇒

tvabst j
(subst aux (S n) t’ (S j)

(myfequal S p)
(tvlift j e’))

| tvrec n t’ ⇒ fun j (p:n=S j) e’ ⇒
tvrec j

(subst aux (S n) t’ (S j)
(myfequal S p)
(tvlift j e’))

end.

(* Top-level substitution function *)
Definition substV : omegaV 1 → omegaV 0 → omegaV 0

:= fun T t ⇒ (subst aux T (refl equal 1) t).

(* Converting between [omega] representations *)

216

Fixpoint unliftV i (t:omegaV i) {struct t} : 0=i → omega :=
match t as X in (omegaV i) return (∀ (D:0=i), omega) with

| tvvar n ⇒ fun D ⇒ (O S set D)
| tvlift n ⇒ fun D ⇒ (O S set D)
| tvint ⇒ fun ⇒ tint
| tvhandle p ⇒ fun ⇒ thandle p
| tvpair n t1 t2 p ⇒ fun D ⇒ tpair (unliftV n t1 D) (unliftV n t2 D) p
| tvcode n A G ⇒ fun D ⇒ tcode A (fun r ⇒ (unliftV (G r) D))
| tvabsr n Fr ⇒ fun D ⇒ tabsr (fun p ⇒ (unliftV (Fr p) D))
| tvabsc n Fc ⇒ fun D ⇒ tabsc (fun c ⇒ (unliftV (Fc c) D))
| tvabscb n Fc A ⇒ fun D ⇒ tabscb (fun c ⇒ (unliftV (Fc c) D)) A
| tvabscd n c1 c2 Fcd ⇒ fun D ⇒ tabscd c1 c2(fun Dc

⇒ (unliftV (Fcd Dc) D))
| tvabst n t’ ⇒ fun D ⇒ tabst (eq rec t’ 1 (sym eq (eq S D)))
| tvrec n t’ ⇒ fun D ⇒ trec (eq rec t’ 1 (sym eq (eq S D)))

end.

Definition unliftV0 : omegaV 0 → omega := fun t ⇒ unliftV t (refl equal).

Fixpoint lifttoV (t:omega) : omegaV 0 :=
match t with
| tint ⇒ tvint
| thandle p ⇒ tvhandle p
| tpair t1 t2 p ⇒ tvpair (lifttoV t1) (lifttoV t2) p
| tcode A G ⇒ tvcode A (fun r ⇒ (lifttoV (G r)))
| tabsr Fr ⇒ tvabsr (fun p ⇒ (lifttoV (Fr p)))
| tabsc Fc ⇒ tvabsc (fun c ⇒ (lifttoV (Fc c)))
| tabscb Fc A ⇒ tvabscb (fun c ⇒ (lifttoV (Fc c))) A
| tabscd c1 c2 Fcd ⇒ tvabscd (fun Dc ⇒ (lifttoV (Fcd Dc)))
| tabst t’ ⇒ tvabst t’
| trec t’ ⇒ tvrec t’
end.

Definition unfoldV := fun t:(omegaV 1) ⇒ unliftV0 (substV t (tvrec t)).

(* Constructors of the type system: regions, capabilities, types *)
Inductive constr : Set :=

| c rgn : rgn → constr
| c cap : capset → constr
| c disj : ∀ c1 c2, c1 ./ c2 → constr
| c type : omega → constr.

(* Register file type *)
Definition rftype : Set := regt → omega.

217

(* Heap region type *)
Definition rgntype : Set := fmap label omega.

(* Data memory type *)
Definition memtype : Set := fmap rgn rgntype.

Program state

Inductive wordval : Set :=
| wi : nat → wordval
| wl : rgn → label → wordval
| wf : label → wordval
| wh : rgn → wordval
| wappr : wordval → rgn → wordval
| wappc : wordval → capset → wordval
| wappcd : ∀ (c1 c2:capset), wordval → (c1 ./ c2) → wordval
| wappt : wordval → omega → wordval
| wfold : wordval → omega → wordval.

Inductive instr : Set :=
| iadd : regt → regt → regt → instr
| iaddi : regt → regt → nat → instr
| imov : regt → regt → instr
| imovi : regt → nat → instr
| imovf : regt → label → instr
| ild : regt → regt → nat → instr
| ist : regt → nat → regt → instr
| ibgt : regt → regt → label → instr
| ibgti : regt → nat → label → instr
| iappr : regt → rgn → instr
| iappc : regt → capset → instr
| iappcd : ∀ c1 c2, regt → (c1 ./ c2) → instr
| iappt : regt → omega → instr
| ifold : regt → omega → instr
| iunfold : regt → instr.

Inductive iseq : Set :=
| icons : instr → iseq → iseq
| ijd : label → iseq
| ijmp : regt → iseq.

Inductive codeval : Set :=
| cvcode : omega → ciseq → codeval

218

| cvstub : omega → codeval.

Inductive heapval : Set :=
| hvpair : wordval → wordval → heapval.

Notation ”[A , B]” := (hvpair A B) (at level 0).

(* Heap region *)
Definition heap := fmap label heapval.

(* Data memory *)
Definition datamem := fmap rgn heap.

(* Register file *)
Definition regfile := regt → wordval.

(* Code memory *)
Definition codemem := fmap label codeval.

(* Program state *)
Definition progstate := datamem × regfile × iseq.

B.3 RgnTAL Operational Semantics

(* Update utility functions *)
Definition rf upd (R:regfile) (r:regt) (v:wordval) : regfile

:= fun r’ ⇒ if (beq regt r’ r) then v else R r’.

Definition hp upd (H:heap) (l:label) (hv:heapval) : heap
:= (fmapupd beq label H l hv).

Definition dm upd (DM:datamem) (p:rgn) (H:heap) : datamem
:= (fmapupd beq rgn DM p H).

Definition rft upd (G:rftype) (r:regt) (t:omega) : rftype
:= fun r’ ⇒ if (beq regt r’ r) then t else G r’.

(* Utility function for type erasure *)
Fixpoint stripabs (v:wordval) {struct v} : (option label) :=

match v with
| wf f ⇒ (Some f)
| wappr v’ ⇒ (stripabs v’)
| wappc v’ ⇒ (stripabs v’)
| wappcd v’ ⇒ (stripabs v’)
| wappt v’ ⇒ (stripabs v’)
| ⇒ (None)

219

end.

The Step relation
Inductive rt eval : codemem → progstate → progstate → Prop :=

| ev iadd
: ∀ CM DM R IS rd rs rt s t,

let i:=(iadd rd rs rt) in
let R’:=(rf upd R rd (wi (plus s t))) in

(R rs)=(wi s) →
(R rt)=(wi t) →
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev iaddi
: ∀ CM DM R IS rd rs s t,

let i:=(iaddi rd rs t) in
let R’:=(rf upd R rd (wi (plus s t))) in

(R rs)=(wi s) →
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev imov
: ∀ CM DM R IS rd rs,

let i:=(imov rd rs) in
let R’:=(rf upd R rd (R rs)) in

(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))
| ev imovi

: ∀ CM DM R IS rd t,
let i:=(imovi rd t) in

let R’:=(rf upd R rd (wi t)) in
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev imovf
: ∀ CM DM R IS rd f,

let i:=(imovf rd f) in
let R’:=(rf upd R rd (wf f)) in

(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))
| ev ild

: ∀ CM DM R IS rd rs n p l H v0 v1 v,
let i:=(ild rd rs n) in

let R’:=(rf upd R rd v) in
(R rs)=(wl p l) →
(fmaplook DM p H) →
(fmaplook H l [v0,v1]) →
(match n with | 0 ⇒ v=v0 | 1 ⇒ v=v1 | ⇒ False end) →
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

220

| ev ist
: ∀ CM DM R IS rd n rs p l H v0 v1 v0’ v1’,

let i:=(ist rd n rs) in
let v:=(R rs) in

let H’:=(hp upd H l [v0’,v1’]) in
let DM’:=(dm upd DM p H’) in

(R rd)=(wl p l) →
(fmaplook DM p H) →
(fmaplook H l [v0,v1]) →
(match n with 0 ⇒ v0’=v ∧ v1’=v1

| 1 ⇒ v0’=v0 ∧ v1’=v | ⇒ False end) →
(rt eval CM (DM, R, (icons i IS)) (DM’, R, IS))

| ev ibgt
: ∀ CM DM R IS rs rt f s t G IS’ IS”,

let i:=(ibgt rs rt f) in
(R rs)=(wi s) →
(R rt)=(wi t) →
(fmaplook CM f (cvcode G IS’)) →
(match (le gt dec s t) with left ⇒ IS”=IS

| ⇒ IS”=IS’ end) →
(rt eval CM (DM, R, (icons i IS)) (DM, R, IS”))

| ev ibgti
: ∀ CM DM R IS rs f s t G IS’ IS”,

let i:=(ibgti rs t f) in
(R rs)=(wi s) →
(fmaplook CM f (cvcode G IS’)) →
(match (le gt dec s t) with left ⇒ IS”=IS

| ⇒ IS”=IS’ end) →
(rt eval CM (DM, R, (icons i IS)) (DM, R, IS”))

| ev iappr
: ∀ CM DM R IS r p,

let i:=(iappr r p) in
let R’:=(rf upd R r (wappr (R r) p)) in

(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))
| ev iappc

: ∀ CM DM R IS r c,
let i:=(iappc r c) in

let R’:=(rf upd R r (wappc (R r) c)) in
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev iappcd

221

: ∀ CM DM R IS r c1 c2 Dc,
let i:=(iappcd c1 c2 r Dc) in

let R’:=(rf upd R r (wappcd c1 c2 (R r) Dc)) in
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev iappt
: ∀ CM DM R IS r t,

let i:=(iappt r t) in
let R’:=(rf upd R r (wappt (R r) t)) in

(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))
| ev ifold

: ∀ CM DM R IS r t,
let i:=(ifold r t) in

let R’:=(rf upd R r (wfold (R r) t)) in
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev iunfold
: ∀ CM DM R IS r v t,

let i:=(iunfold r) in
let R’:=(rf upd R r v) in

(R r)=(wfold v t) →
(rt eval CM (DM, R, (icons i IS)) (DM, R’, IS))

| ev ijd
: ∀ CM DM R f G IS,

(fmaplook CM f (cvcode G IS)) →
(rt eval CM (DM, R, (ijd f)) (DM, R, IS))

| ev ijmp
: ∀ CM DM R r G IS f,

(stripabs (R r))=(Some f) →
(fmaplook CM f (cvcode G IS)) →
(rt eval CM (DM, R, (ijmp r)) (DM, R, IS)).

B.4 RgnTAL Static Semantics

(* Defining capability set equality *)
Definition eqcap (A1 A2:capset) : Prop

:= ∀ p, (A1 p)=(A2 p).

Notation ”A =c B” := (eqcap A B) (at level 0).

(* Derivable properties of the equality *)
Lemma eqcap refl : ∀ A, A =c A.

Lemma eqcap sym : ∀ A1 A2, A1 =c A2 → A2 =c A1.

222

Lemma eqcap trans : ∀ A1 A2 A3, A1 =c A2 → A2 =c A3 → A1 =c A3.

Lemma eqcap barcap each
: ∀ A1 A2, A1 =c A2 → (barcap A1) =c (barcap A2).

Lemma eqcap distrib
: ∀ A1 A2 D1 D2,

(barcap (A1 ⊕ A2 “ D1)) =c ((barcap A1) ⊕ (barcap A2) “ D2).

Hint Immediate eqcap distrib.
Hint Immediate eqcap refl eqcap sym eqcap barcap each.

Lemma eqcap cong plus
: ∀ A1 A2 A1’ A2’ D D’,

A1 =c A1’ → A2 =c A2’ → (A1 ⊕ A2 “ D) =c (A1’ ⊕ A2’ “ D’).

Lemma eqcap cong bar : ∀ A1 A2, A1 =c A2 → (barcap A1) =c (barcap A2).

Lemma eqcap null : ∀ A D, (nullcap ⊕ A “ D) =c A.

Lemma eqcap comm
: ∀ A1 A2 D12 D21, (A1 ⊕ A2 “ D12) =c (A2 ⊕ A1 “ D21).

Lemma eqcap assoc
: ∀ A1 A2 A3 D1 D2 D3 D4,

(A1 ⊕ (A2 ⊕ A3 “ D1) “ D2) =c ((A1 ⊕ A2 “ D3) ⊕ A3 “ D4).

Lemma eqcap dup
: ∀ A D, (barcap A) =c ((barcap A) ⊕ (barcap A) “ D).

Lemma eqcap bar null : (barcap nullcap) =c nullcap.

Lemma eqcap flag : ∀ p, (barcap (uniqcap p)) =c (multcap p).

Lemma eqcap bar idem : ∀ A, (barcap (barcap A)) =c (barcap A).

Hint Immediate eqcap cong plus eqcap cong bar eqcap null eqcap comm
eqcap assoc eqcap dup eqcap bar null eqcap flag eqcap bar idem.

(* Capability set subtyping *)
Inductive subaccap : accap → accap → Prop :=

| subaccap refl : ∀ c, subaccap c c
| subaccap mult : subaccap uniC mulC.

Definition subcap : capset → capset → Prop
:= fun A1 A2 ⇒ ∀ p, subaccap (A1 p) (A2 p).

Notation ”A ⊆c B” := (subcap A B) (at level 0).

Lemma subcap eq : ∀ A1 A2, A1 =c A2 → A1 ⊆c A2.

Lemma subcap trans

223

: ∀ A1 A2, A1 ⊆c A2 → ∀ A3, A2 ⊆c A3 → A1 ⊆c A3.

Lemma subcap cong bar
: ∀ A1 A2, A1 ⊆c A2 → (barcap A1) ⊆c (barcap A2).

Lemma subcap bar : ∀ A, A ⊆c (barcap A).

(* Code type instantiation *)
Inductive instcodetype : omega → list constr → omega → Prop :=

| inst code
: ∀ t,

instcodetype t (nil) t
| inst absr

: ∀ Fr g Cs t,
instcodetype (Fr g) Cs t →
instcodetype (tabsr Fr) ((c rgn g)::Cs) t

| inst absc
: ∀ Fc c Cs t,

instcodetype (Fc c) Cs t →
instcodetype (tabsc Fc) ((c cap c)::Cs) t

| inst abscb
: ∀ Fc A c Cs t,

instcodetype (Fc c) Cs t →
c ⊆c A →

instcodetype (tabscb Fc A) ((c cap c)::Cs) t
| inst abscd

: ∀ c1 c2 Fcd Dc Cs t,
instcodetype (Fcd Dc) Cs t →
instcodetype (tabscd c1 c2 Fcd) ((c disj c1 c2 Dc)::Cs) t

| inst abst
: ∀ Ft t Cs t’ t”,

t’ = unliftV0 (substV Ft (lifttoV t)) →
instcodetype t’ Cs t” →

instcodetype (tabst Ft) ((c type t)::Cs) t”.

(* Type equality *)
Definition eqtype (t1 t2:omega) : Prop

:= t1=t2.

(* Register file type equality *)
Definition eqrftype (G1 G2:rftype) : Prop := ∀ r, eqtype (G1 r) (G2 r).

(* Properties of type equality *)
Definition eqtype refl : ∀ t, eqtype t t := fun t ⇒ refl equal t.

224

Definition eqtype sym : ∀ t1 t2, eqtype t1 t2 → eqtype t2 t1
:= fun t1 t2 D ⇒ (sym eq D).

Definition eqtype trans
: ∀ t1 t2 t3, eqtype t1 t2 → eqtype t2 t3 → eqtype t1 t3
:= fun t1 t2 t3 D1 D2 ⇒ (trans eq D1 D2).

Hint Immediate eqtype refl eqtype sym.

Hint Immediate eqtype refl eqtype sym.

(* Memory type lookup *)
Definition memtypeof (MT:memtype) (p:rgn) (l:label) (t:omega) : Prop

:= ∃ g, (fmaplook MT p g) ∧ (fmaplook g l t).

(* Syntactic restrictions on code types *)
Inductive iscodetype : omega → Prop :=

| isct tabsr : ∀ F, (∀ x, iscodetype (F x)) → (iscodetype (tabsr F))
| isct tabsc : ∀ F, (∀ x, iscodetype (F x)) → (iscodetype (tabsc F))
| isct tabscb : ∀ F A, (∀ x, iscodetype (F x)) → (iscodetype (tabscb F A))
| isct tabscd : ∀ c1 c2 F, (∀ (D:c1 ./ c2), iscodetype (F D)) →

(iscodetype (tabscd c1 c2 F))
| isct tabst : ∀ F, (∀ x, iscodetype (unliftV0 (substV F (lifttoV x)))) →

(iscodetype (tabst F))
| isct tcode : ∀ A G, iscodetype (tcode A G).

Definition codevaltype (cv:codeval) : omega :=
match cv with (cvcode t) ⇒ t | (cvstub t) ⇒ t end.

(* Well-formed word values *)
Inductive wf wordval : codemem → memtype → wordval → omega → Prop :=

| wfv int : ∀ CM MT i, wf wordval CM MT (wi i) tint
| wfv addr : ∀ CM MT p l t,

memtypeof MT p l t →
wf wordval CM MT (wl p l) t

| wfv addr pair
: ∀ CM MT p l t1 t2,

notindomf MT p →

wf wordval CM MT (wl p l) (tpair t1 t2 p)
| wfv codeptr

: ∀ CM MT f cv t,
fmaplook CM f cv →

eqtype t (codevaltype cv) →
wf wordval CM MT (wf f) t

| wfv handle

225

: ∀ CM MT g,
wf wordval CM MT (wh g) (thandle g)

| wfv typer
: ∀ CM MT v g Fr,

wf wordval CM MT v (tabsr Fr) →
iscodetype (tabsr Fr) →
wf wordval CM MT (wappr v g) (Fr g)

| wfv typec
: ∀ CM MT v A Fc,

wf wordval CM MT v (tabsc Fc) →
iscodetype (tabsc Fc) →
wf wordval CM MT (wappc v A) (Fc A)

| wfv typecb
: ∀ CM MT v A Fc A’,

wf wordval CM MT v (tabscb Fc A’) →
subcap A A’ →
iscodetype (tabscb Fc A’) →
wf wordval CM MT (wappc v A) (Fc A)

| wfv typet
: ∀ CM MT v t Ft t’,

wf wordval CM MT v (tabst Ft) →
unliftV0 (substV Ft (lifttoV t)) = t’ →
iscodetype (tabst Ft) →
wf wordval CM MT (wappt v t) t’

| wfv fold
: ∀ CM MT v t,

wf wordval CM MT v (unliftV0 (substV t (tvrec t))) →
wf wordval CM MT (wfold v (trec t)) (trec t).

(* Well-formed instruction sequences *)
Inductive wf iseq : codemem → capset → rftype → iseq → Prop :=

| wf iadd
: ∀ CM A G rd rs rt Is,

G(rs)=tint →
G(rt)=tint →
wf iseq CM A (rft upd G rd tint) Is →
wf iseq CM A G (icons (iadd rd rs rt) Is)

| wf iaddi
: ∀ CM A G rd rs t Is,

G(rs)=tint →
wf iseq CM A (rft upd G rd tint) Is →

226

wf iseq CM A G (icons (iaddi rd rs t) Is)
| wf imov

: ∀ CM A G rd rs Is,
wf iseq CM A (rft upd G rd (G(rs))) Is →
wf iseq CM A G (icons (imov rd rs) Is)

| wf imovi
: ∀ CM A G rd s Is,

wf iseq CM A (rft upd G rd tint) Is →
wf iseq CM A G (icons (imovi rd s) Is)

| wf imovf
: ∀ CM A G rd f Is cv t,

fmaplook CM f cv →

eqtype t (codevaltype cv) →
wf iseq CM A (rft upd G rd t) Is →
wf iseq CM A G (icons (imovf rd f) Is)

| wf ild
: ∀ CM A G rd rs n Is t t1 t2 g,

(n=0 ∧ t=t1) ∨ (n=1 ∧ t=t2) →
G(rs) = tpair t1 t2 g →

subaccap (A g) mulC →

wf iseq CM A (rft upd G rd t) Is →
wf iseq CM A G (icons (ild rd rs n) Is)

| wf ist
: ∀ CM A G rd n rs Is t t1 t2 g,

(n=0 ∧ t=t1) ∨ (n=1 ∧ t=t2) →
G(rd) = tpair t1 t2 g →

G(rs) = t →
subaccap (A g) mulC →

wf iseq CM A G Is →
wf iseq CM A G (icons (ist rd n rs) Is)

| wf ibgt
: ∀ CM A G rs rt f Is cv ts A’ G’,

G(rs) = tint →
G(rt) = tint →
fmaplook CM f cv → instcodetype (codevaltype(cv)) ts (tcode A’ G’) →
eqrftype G G’ →
subcap A A’ →
wf iseq CM A G Is → wf iseq CM A G (icons (ibgt rs rt f) Is)

227

| wf ibgti
: ∀ CM A G rs t f Is cv ts A’ G’,

G(rs) = tint →
fmaplook CM f cv → instcodetype (codevaltype(cv)) ts (tcode A’ G’) →
eqrftype G G’ →
subcap A A’ →
wf iseq CM A G Is → wf iseq CM A G (icons (ibgti rs t f) Is)

| wf iappr
: ∀ CM A G r g Is Fr,

G(r) = tabsr Fr →
wf iseq CM A (rft upd G r (Fr g)) Is →
wf iseq CM A G (icons (iappr r g) Is)

| wf iappc
: ∀ CM A G r c Is Fc,

G(r) = tabsc Fc →
wf iseq CM A (rft upd G r (Fc c)) Is →
wf iseq CM A G (icons (iappc r c) Is)

| wf iappcb
: ∀ CM A G r c Is Fc A’,

G(r) = tabscb Fc A’ →
subcap c A’ →
wf iseq CM A (rft upd G r (Fc c)) Is →
wf iseq CM A G (icons (iappc r c) Is)

| wf iappcd
: ∀ CM A G r c1 c2 Dc Is Fcd,

G(r) = tabscd c1 c2 Fcd →

wf iseq CM A (rft upd G r (Fcd Dc)) Is →
wf iseq CM A G (icons (iappcd c1 c2 r Dc) Is)

| wf iappt
: ∀ CM A G r t Is Ft t’,

G(r) = tabst Ft →
t’ = unliftV0 (substV Ft (lifttoV t)) →
wf iseq CM A (rft upd G r t’) Is →
wf iseq CM A G (icons (iappt r t) Is)

| wf ifold
: ∀ CM A G r t Is,

G(r) = unfoldV t →
wf iseq CM A (rft upd G r (trec t)) Is →
wf iseq CM A G (icons (ifold r (trec t)) Is)

228

| wf iunfold
: ∀ CM A G r Is t t’,

G(r) = trec t →
t’ = unfoldV t →
wf iseq CM A (rft upd G r t’) Is →
wf iseq CM A G (icons (iunfold r) Is)

| wf ijd
: ∀ CM A G f cv ts A’ G’,

fmaplook CM f cv → instcodetype (codevaltype(cv)) ts (tcode A’ G’) →
eqrftype G G’ →
subcap A A’ →
wf iseq CM A G (ijd f)

| wf ijmp
: ∀ CM A G r t ts A’ G’,

G(r) = t →
instcodetype t ts (tcode A’ G’) → eqrftype G G’ →
subcap A A’ →
wf iseq CM A G (ijmp r).

(* Well-formed code heap values *)
Inductive wf codeval : codemem → codeval → Prop :=

| wf cvcode : ∀ CM t Is,
iscodetype t →
(∀ Ts A G, instcodetype t Ts (tcode A G) →

wf iseq CM A G Is) →
wf codeval CM (cvcode t Is)

| wf cvstub : ∀ CM t,
iscodetype t →
wf codeval CM (cvstub t).

(* Well-formed data type values *)
Inductive wf heapval : codemem → memtype → heapval → rgn → omega → Prop :=

| wf hvpair : ∀ CM MT v1 v2 t1 t2 g,
wf wordval CM MT v1 t1 →

wf wordval CM MT v2 t2 →

wf heapval CM MT [v1, v2] g (tpair t1 t2 g).

(* Well-formed heap region *)
Definition wf heap : codemem → memtype → heap → rgn → rgntype → Prop :=

fun CM MT H g gt ⇒
(eqdomf H gt) ∧
(∀ l hv t, fmaplook H l hv → fmaplook gt l t →

wf heapval CM MT hv g t).

229

(* Well-formed data memory *)
Definition wf datamem : codemem → datamem → memtype → Prop :=

fun CM M MT ⇒

(eqdomf M MT) ∧
(∀ p H gt, fmaplook M p H → fmaplook MT p gt →

wf heap CM MT H p gt).

(* Well-formed register file *)
Definition wf regfile : codemem → memtype → regfile → rftype → Prop :=

fun CM MT R G ⇒

∀ r, wf wordval CM MT (R r) (G r).

(* Well-formed code memory *)
Definition wf codemem : codemem → Prop :=

fun CM ⇒ ∀ l cv, fmaplook CM l cv → wf codeval CM cv.

(* Memory type–capability satisfiability *)
Definition sat cap memtype : memtype → capset → Prop :=

fun MT A ⇒

(∀ g, indomf MT g → subaccap (A g) mulC) ∧
(∀ g, subaccap (A g) mulC → indomf MT g).

(* Well-formed program state *)
Definition wf state

: codemem → datamem → regfile → memtype → capset → rftype → Prop :=
fun CM M R MT A G ⇒

wf codemem CM ∧

wf datamem CM M MT ∧

wf regfile CM MT R G ∧

sat cap memtype MT A.

(* Well-formed program *)
Inductive wf program : (codemem × progstate) → Prop :=

| wf rgntalprog : ∀ CM M R Is MT A G,
wf state CM M R MT A G →

wf iseq CM A G Is →
wf program (CM, (M, R, Is)).

B.5 RgnTAL Soundness Proofs

Lemmas about the types that appear in the data and code memory types

Lemma memtype not int
: ∀ CM M MT p l, wf datamem CM M MT → ¬memtypeof MT p l tint.

230

Lemma memtype not handle
: ∀ CM M MT p l g, wf datamem CM M MT → ¬memtypeof MT p l (thandle g).

Lemma memtype not rec
: ∀ CM M MT p l t, wf datamem CM M MT → ¬memtypeof MT p l (trec t).

Lemma memtype not code
: ∀ CM M MT p l A G, wf datamem CM M MT → ¬memtypeof MT p l (tcode A G).

Lemma memtype not absr
: ∀ CM M MT p l Fr, wf datamem CM M MT →¬memtypeof MT p l (tabsr Fr).

Lemma memtype not absc
: ∀ CM M MT p l Fc, wf datamem CM M MT → ¬memtypeof MT p l (tabsc Fc).

Lemma memtype not abscb
: ∀ CM M MT p l Fc A, wf datamem CM M MT →¬memtypeof MT p l (tabscb Fc A).

Lemma memtype not abscd
: ∀ CM M MT p l c1 c2 Fc,

wf datamem CM M MT → ¬memtypeof MT p l (tabscd c1 c2 Fc).

Lemma memtype not abst
: ∀ CM M MT p l Ft,

wf datamem CM M MT → ¬memtypeof MT p l (tabst Ft).

Lemmas about the syntactic form of code value types
Lemma iscodetype not int : ∀ t, iscodetype t → t 6= tint.

Lemma codevaltype not int
: ∀ CM f cv, wf codemem CM → fmaplook CM f cv → ¬codevaltype cv=tint.

Lemma codevaltype not handle
: ∀ CM f cv g, wf codemem CM → fmaplook CM f cv → ¬codevaltype cv=(thandle g).

Lemma codevaltype not rec
: ∀ CM f cv t, wf codemem CM → fmaplook CM f cv → ¬codevaltype cv=trec t.

Lemma codevaltype not pair
: ∀ CM f cv t1 t2 p, wf codemem CM → fmaplook CM f cv → ¬codevaltype cv=tpair t1 t2 p.

Lemma codevaltype iscodetype
: ∀ CM f cv, wf codemem CM → fmaplook CM f cv → iscodetype (codevaltype cv).

Type erasure with code pointers

Lemma wf tabsr stripabs
: ∀ CM M MT v t,

wf datamem CM M MT →

wf wordval CM MT v t →

231

(∃ Fr, t = (tabsr Fr)) ∨
(∃ Fc, t = (tabsc Fc)) ∨
(∃ Fc, ∃ A, t = (tabscb Fc A)) ∨
(∃ c1, ∃ c2, ∃ Fc, t = (tabscd c1 c2 Fc)) ∨
(∃ Ft, t = (tabst Ft)) →

∃ f, stripabs v = Some f.

Canonical forms lemmas

Lemma canform regval int
: ∀ CM M R MT A G r,

wf state CM M R MT A G →

G(r)=tint →
∃ s, R(r)=wi s.

Lemma canform regval handle
: ∀ CM M R MT A G r g,

wf state CM M R MT A G →

G(r)=thandle g →

R(r)=wh g.

Lemma canform regval pair
: ∀ CM M R MT A G r t1 t2 g,

wf state CM M R MT A G →

G(r) = tpair t1 t2 g →

subaccap (A g) mulC →

∃ p, ∃ l, ∃ H, ∃ v1, ∃ v2,
R(r) = (wl p l) ∧
fmaplook M p H ∧

fmaplook H l [v1, v2].

Lemma canform regval rec
: ∀ CM M R MT A G r t,

wf state CM M R MT A G →

G(r)=trec t →
∃ v, R(r)=wfold v (trec t).

Lemma canform regval code
: ∀ CM M R MT A G r A’ G’,

wf state CM M R MT A G →

G(r)=tcode A’ G’ →
∃ f, stripabs(R(r))=(Some f).

Lemma canform regval absr
: ∀ CM M R MT A G r Fr,

232

wf state CM M R MT A G →

G(r)=tabsr Fr →
∃ f, stripabs(R(r))=(Some f).

Lemma canform regval absc
: ∀ CM M R MT A G r F,

wf state CM M R MT A G →

G(r)=tabsc F →

∃ f, stripabs(R(r))=(Some f).

Lemma canform regval abscb
: ∀ CM M R MT A G r F A’,

wf state CM M R MT A G →

G(r)=tabscb F A’ →
∃ f, stripabs(R(r))=(Some f).

Lemma canform regval abscd
: ∀ CM M R MT A G r c1 c2 F,

wf state CM M R MT A G →

G(r)=tabscd c1 c2 F →

∃ f, stripabs(R(r))=(Some f).

Lemma canform regval abst
: ∀ CM M R MT A G r F,

wf state CM M R MT A G →

G(r)=tabst F →

∃ f, stripabs(R(r))=(Some f).

Progress lemmas
Definition isgoodjump : codemem → regfile → iseq → Prop :=

fun CM R Is ⇒
match Is with

| (icons (ibgt f)) ⇒
(∃ t’, ∃ Is’, (fmaplook CM f (cvcode t’ Is’)))

| (icons (ibgti f)) ⇒
(∃ t’, ∃ Is’, (fmaplook CM f (cvcode t’ Is’)))

| (ijd f) ⇒
(∃ t’, ∃ Is’, (fmaplook CM f (cvcode t’ Is’)))

| (ijmp r) ⇒
∀ f, stripabs(R r)=(Some f) →

(∃ t’, ∃ Is’, (fmaplook CM f (cvcode t’ Is’)))
| ⇒ True

end.

Lemma progress iadd

233

: ∀ CM M R MT A G rd rs rt Is,
let curIs := (icons (iadd rd rs rt) Is) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iaddi
: ∀ CM M R MT A G rd rs t Is,

let curIs := (icons (iaddi rd rs t) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress imov
: ∀ CM M R MT A G rd rs Is,

let curIs := (icons (imov rd rs) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress imovi
: ∀ CM M R MT A G rd t Is,

let curIs := (icons (imovi rd t) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress imovf
: ∀ CM M R MT A G rd f Is,

let curIs := (icons (imovf rd f) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ild
: ∀ CM M R MT A G rd rs n Is,

let curIs := (icons (ild rd rs n) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ist
: ∀ CM M R MT A G rd rs n Is,

let curIs := (icons (ist rd n rs) Is) in
wf state CM M R MT A G →

234

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ibgt
: ∀ CM M R MT A G rs rt f Is,

let curIs := (icons (ibgt rs rt f) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
isgoodjump CM R curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ibgti
: ∀ CM M R MT A G rs t f Is,

let curIs := (icons (ibgti rs t f) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
isgoodjump CM R curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iappr
: ∀ CM M R MT A G r g Is,

let curIs := (icons (iappr r g) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iappc
: ∀ CM M R MT A G r c Is,

let curIs := (icons (iappc r c) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iappcd
: ∀ CM M R MT A G r c1 c2 Dc Is,

let curIs := (icons (iappcd c1 c2 r Dc) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iappt
: ∀ CM M R MT A G r t Is,

let curIs := (icons (iappt r t) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →

235

∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ifold
: ∀ CM M R MT A G r t Is,

let curIs := (icons (ifold r t) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress iunfold
: ∀ CM M R MT A G r Is,

let curIs := (icons (iunfold r) Is) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ijd
: ∀ CM M R MT A G f,

let curIs := (ijd f) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
isgoodjump CM R curIs →
∃ P, rt eval CM (M, R, curIs) P.

Lemma progress ijmp
: ∀ CM M R MT A G r,

let curIs := (ijmp r) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
isgoodjump CM R curIs →
∃ P, rt eval CM (M, R, curIs) P.

Preservation lemmas

Lemma preserv iadd
: ∀ CM M R MT A G rd rs rt Is M’ R’ Is’,

let curIs := (icons (iadd rd rs rt) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A (rft upd G rd tint).

Lemma preserv iaddi

236

: ∀ CM M R MT A G rd rs t Is M’ R’ Is’,
let curIs := (icons (iaddi rd rs t) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A (rft upd G rd tint).

Lemma preserv imov
: ∀ CM M R MT A G rd rs Is M’ R’ Is’,

let curIs := (icons (imov rd rs) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A (rft upd G rd (G rs)).

Lemma preserv imovi
: ∀ CM M R MT A G rd t Is M’ R’ Is’,

let curIs := (icons (imovi rd t) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A (rft upd G rd tint).

Lemma preserv imovf
: ∀ CM M R MT A G rd f Is M’ R’ Is’,

let curIs := (icons (imovf rd f) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’, ∃ cv, ∃ t,
fmaplook CM f cv ∧ eqtype t (codevaltype cv) ∧
wf state CM M’ R’ MT’ A (rft upd G rd t).

Lemma preserv ild
: ∀ CM M R MT A G rd rs n Is M’ R’ Is’,

let curIs := (icons (ild rd rs n) Is) in

237

let P := (M’, R’, Is’) in
wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’, ∃ t, ∃ t1, ∃ t2, ∃ g,
(n = 0 ∧ t = t1 ∨ n = 1 ∧ t = t2) ∧ (G rs = tpair t1 t2 g) ∧
wf state CM M’ R’ MT’ A (rft upd G rd t).

Lemma preserv ist
: ∀ CM M R MT A G rd rs n Is M’ R’ Is’,

let curIs := (icons (ist rd n rs) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A G.

Lemma preserv ibgt
: ∀ CM M R MT A G rs rt f Is M’ R’ Is’,

let curIs := (icons (ibgt rs rt f) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A G .

Lemma preserv ibgti
: ∀ CM M R MT A G rs t f Is M’ R’ Is’,

let curIs := (icons (ibgti rs t f) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
wf state CM M’ R’ MT’ A G .

Lemma preserv iappr
: ∀ CM M R MT A G r g Is M’ R’ Is’,

let curIs := (icons (iappr r g) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

238

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’, ∃ Fr,
G r = tabsr Fr ∧
wf state CM M’ R’ MT’ A (rft upd G r (Fr g)).

Lemma preserv iappc
: ∀ CM M R MT A G r c Is M’ R’ Is’,

let curIs := (icons (iappc r c) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’,
∃ Fc, (G r = tabsc Fc ∨ ∃ A’, G r = tabscb Fc A’) ∧
wf state CM M’ R’ MT’ A (rft upd G r (Fc c)).

Lemma preserv iappt
: ∀ CM M R MT A G r t Is M’ R’ Is’,

let curIs := (icons (iappt r t) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’, ∃ A’, ∃ G’,
wf state CM M’ R’ MT’ A’ G’ .

Lemma preserv ifold
: ∀ CM M R MT A G r t Is M’ R’ Is’,

let curIs := (icons (ifold r t) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →
rt eval CM (M, R, curIs) P →

∃ MT’, ∃ A’, ∃ G’,
wf state CM M’ R’ MT’ A’ G’ .

Lemma preserv iunfold
: ∀ CM M R MT A G r Is M’ R’ Is’,

let curIs := (icons (iunfold r) Is) in
let P := (M’, R’, Is’) in

wf state CM M R MT A G →

wf iseq CM A G curIs →

239

rt eval CM (M, R, curIs) P →

∃ MT’, ∃ A’, ∃ G’,
wf state CM M’ R’ MT’ A’ G’ .

B.6 Translating RgnTAL to CAP

Notation for separation logic primitives
Definition mempred := fmapPred word word.

Definition truemp := @truefp word word.
Definition falsemp : mempred := fun ⇒ False.
Definition emptymp : mempred := @emptyfp word word.

Notation ”P1 & P2” := (andfp P1 P2) (at level 0).
Notation ”‘ P” := (liftfp P) (at level 0).
Notation ”‘ex P” := (@existsfp P) (at level 0).
Notation ”a |−> w” := (singfp a w) (at level 0).
Notation ”a |−> ?” := (‘ex fun w ⇒ (a |−> w)) (at level 0).

Definition appliesto (M:fmap word word) (MM:mem) : Prop :=
∀ a w, fmaplook M a w → MM a = w.

The runtime system

Section rgntal2tis.

Definition rgnsize := 10.
Definition nilptr := 0.

Definition heaplyt := fmap label word.
Definition datamemlyt := fmap rgn heaplyt.
Definition rgnlyt := fmap rgn word.
Definition extcodety := word → optT (list cmd ** pred).

Variable ExtCode : extcodety.

Variable DMLyt : datamemlyt.
Variable RLyt : rgnlyt.
Variable CMLyt : heaplyt.

(* Translating a data pointer using the layout functions *)
Definition tr dataptr : rgn → label → option word

:= fun p l ⇒ match (DMLyt p) with
| Some HL ⇒ match (HL l) with

| Some w ⇒ Some w
| ⇒ None

240

end
| ⇒ None

end.

Fixpoint iseq size (Is : iseq) : nat :=
match Is with

| icons Is’ ⇒ S (iseq size Is’)
| ⇒ 1

end.

Fixpoint wordsinmem (ws : wordlist) (w : word) {struct ws} : mempred :=
match ws with
| nil ⇒ emptymp
| w’ :: ws’ ⇒ ((w |−> w’) && (wordsinmem ws’ (S w)))
end.

Definition cmdsinmem (Cs : cmdlist) w : mempred :=
‘ex fun Ws ⇒ ‘(map Dc Ws = Cs) & (wordsinmem Ws w).

Fixpoint tailnth (n : nat) A (Ls : list A) {struct n} :
option (list A) :=

match n with
| O ⇒ Some Ls
| S m ⇒ match Ls with

| nil ⇒ None
| ⇒ tailnth m (tail Ls)
end

end.
Describing the free list
Fixpoint ptrtoanylist (a sz:word) {struct sz} : mempred :=

match sz with
| 0 ⇒ emptymp
| (S n) ⇒ ((a |−> ?) && (ptrtoanylist (a+1) n))

end.

Definition freeblock (a sz nxt:word) : mempred :=
‘(a 6= nilptr) &
((a |−> sz) &&
(((a+1) |−> ?) && (((a+2) |−> nxt) && (ptrtoanylist (a+3) sz)))).

Definition newblock (a sz:word) : mempred :=
‘(a 6= nilptr) &
((a |−> sz) &&
(((a+1) |−> 0) && (((a+2) |−> ?) && (ptrtoanylist (a+3) sz)))).

Fixpoint fblist (n a:word) {struct n} : mempred :=

241

match n with
| 0 ⇒ ‘(a=nilptr) & emptymp
| (S n’) ⇒ ‘(a6=nilptr)

& (‘ex fun sz ⇒

‘ex fun a’ ⇒ ((freeblock a sz a’) && (fblist n’ a’)))
end.

Definition freelist (a:word) : mempred :=
‘ex fun n ⇒ (fblist n a).

Translation relations

(* Word Values and Data Heap Values *)

Inductive tr wordval : wordval → word → Prop :=
| tr wi : ∀ n, tr wordval (wi n) n
| tr wl : ∀ p l w,

tr dataptr p l = Some w →

tr wordval (wl p l) w
| tr wlnop : ∀ p l w,

notindomf DMLyt p →

tr wordval (wl p l) w
| tr wlnol : ∀ p l HLyt w,

fmaplook DMLyt p HLyt →
notindomf HLyt l →
tr wordval (wl p l) w

| tr wf : ∀ f w,
fmaplook CMLyt f w →

tr wordval (wf f) w
| tr wh : ∀ p w,

fmaplook RLyt p w →

tr wordval (wh p) w
| tr wappr : ∀ v p w,

tr wordval v w →

tr wordval (wappr v p) w
| tr wappc : ∀ v c w,

tr wordval v w →

tr wordval (wappc v c) w
| tr wappcd : ∀ v c1 c2 Dc w,

tr wordval v w →

tr wordval (wappcd c1 c2 v Dc) w
| tr wappt : ∀ v t w,

242

tr wordval v w →

tr wordval (wappt v t) w
| tr wfold : ∀ v t w,

tr wordval v w →

tr wordval (wfold v t) w.

(* Utility functions for maps *)
Fixpoint limmapfoldr

B1 B2
(Lim:nat)
(H:natfmap B1)
(f :B1 → B2 → B2)
(b2:B2) {struct Lim} : B2 :=
match Lim with

| 0 ⇒ b2
| (S m) ⇒ match (H Lim) with

| None ⇒ limmapfoldr m H f b2
| Some b1 ⇒ f b1 (limmapfoldr m (fmapdelN H Lim) f b2)

end
end.

Fixpoint limmapstarfp
B1 B2
(Lim:nat)
(H:natfmap B1)
(eP : nat → B1 → (fmapPred nat B2)) {struct Lim}

: fmapPred nat B2 :=
match Lim with

| 0 ⇒ (‘(nulldomf H) & (@emptyfp))
| (S m) ⇒ match (H Lim) with

| None ⇒ limmapstarfp m H eP
| Some b ⇒ ((eP Lim b) &&

(limmapstarfp m (fmapdelN H Lim) eP))
end

end.

Definition tr heapval (p:rgn) (l:nat) (a:word) (hv:heapval) : mempred :=
match hv with [v0,v1] ⇒

‘ex fun w0 ⇒

‘ex fun w1 ⇒

‘(tr dataptr p l = (Some a)) &
‘(tr wordval v0 w0) &

243

‘(tr wordval v1 w1) &
((a |−> w0) && ((a+1) |−> w1))

end.

Fixpoint tr hvs (p:rgn) (a:word) (Lim:word) (H:heap) {struct Lim} : mempred :=
match Lim with

| 0 ⇒ (‘(nulldomf H) & (@emptyfp))
| (S m) ⇒ match (H Lim) with

| None ⇒ tr hvs p a m H
| Some hv ⇒ ((tr heapval p Lim a hv) &&

(tr hvs p (2+a) m (fmapdelN H Lim)))
end

end.

Definition hvlist size (Lim:nat) (H:heap) : nat :=
limmapfoldr Lim H (fun hv sz ⇒ 2+sz) 0.

Definition tr heap : rgn → heap → mempred :=
fun p H ⇒

‘ex fun a ⇒

‘ex fun hplim ⇒

‘ex fun rsize ⇒
‘ex fun diff ⇒

‘(a 6= nilptr) &
‘(fmaplook RLyt p a) &
‘(@limitf heapval H hplim) &
‘((hvlist size hplim H)+diff = rsize) &
(((a |−> rsize) &&

(((a+1) |−> (hvlist size hplim H)) &&
((a+2) |−> ?))) &&
((tr hvs p (a+3) hplim H) &&
(ptrtoanylist (a+3+(hvlist size hplim H)) diff))).

(* Instructions and code values *)

Definition regt2reg (r : regt) : reg := nat2reg (regt2nat r).
Coercion regt2reg : regt ¿-¿ reg.

Inductive tr instr : cmdlist → instr → cmdlist → Prop :=
| tr iadd : ∀ Cs rd rs rt,

tr instr Cs (iadd rd rs rt) (add rd rs rt :: Cs)
| tr iaddi : ∀ Cs rd rs t,

tr instr Cs (iaddi rd rs t) (addi rd rs t :: Cs)
| tr imov : ∀ Cs rd rs,

tr instr Cs (imov rd rs) (mov rd rs :: Cs)

244

| tr imovi : ∀ Cs rd s,
tr instr Cs (imovi rd s) (movi rd s :: Cs)

| tr imovf : ∀ Cs rd f w,
fmaplook CMLyt f w →

tr instr Cs (imovf rd f) (movi rd w :: Cs)
| tr ild : ∀ Cs rd rs n,

tr instr Cs (ild rd rs n) (ld rd rs n :: Cs)
| tr ist : ∀ Cs rd n rs,

tr instr Cs (ist rd n rs) (st rd n rs :: Cs)
| tr ibgt : ∀ Cs rs rt f w,

fmaplook CMLyt f w →

tr instr Cs (ibgt rs rt f) (bgt rs rt w :: Cs)
| tr ibgti : ∀ Cs rs t f w,

fmaplook CMLyt f w →

tr instr Cs (ibgti rs t f) (bgti rs t w :: Cs)
| tr iappr : ∀ Cs r x,

tr instr Cs (iappr r x) (mov r r :: Cs)
| tr iappc : ∀ Cs r x,

tr instr Cs (iappc r x) (mov r r :: Cs)
| tr iappcd : ∀ Cs r c1 c2 Dc,

tr instr Cs (iappcd c1 c2 r Dc) (mov r r :: Cs)
| tr iappt : ∀ Cs r x,

tr instr Cs (iappt r x) (mov r r :: Cs)
| tr ifold : ∀ Cs r x,

tr instr Cs (ifold r x) (mov r r :: Cs)
| tr iunfold : ∀ Cs r,

tr instr Cs (iunfold r) (mov r r :: Cs).

Inductive tr iseq : iseq → cmdlist → Prop :=
| tr icons : ∀ i Is cs Cs,

tr iseq Is Cs → tr instr Cs i cs → tr iseq (icons i Is) cs
| tr ijd : ∀ f w,

fmaplook CMLyt f w →

tr iseq (ijd f) (jd w :: nil)
| tr ijmp : ∀ r,

tr iseq (ijmp r) (jmp r :: nil).

Inductive tr codeval : codeval → wordlist → Prop :=
| tr cvcode : ∀ G Is Cs Ws,

tr iseq Is Cs →
Cs = map Dc Ws →

245

tr codeval (cvcode G Is) Ws
| tr cvstub : ∀ G, tr codeval (cvstub G) nil.

(* Translating the data and code heaps *)
Section sizevars.

Variables ec min ec size cm min cm size : word.

Definition tr datamem aux (Lim:nat) (DM:datamem) : mempred
:= limmapstarfp Lim DM tr heap.

Definition tr datamem (DM:datamem) dm min dm size : mempred :=
‘ex fun dmlim ⇒

‘ex fun fp ⇒ (fun M ⇒ coversfnat M dm min (dm min+dm size)) &
‘(limitf DM dmlim) &
((dm min |−> dm size) &&

(((dm min+1) |−> fp) && ((tr datamem aux dmlim DM) && (freelist fp)))).

Definition tr datamem exc freelist (DM:datamem) dm min dm size : mempred :=
‘ex fun dmlim ⇒

‘(limitf DM dmlim) &
((dm min |−> dm size) && (tr datamem aux dmlim DM)).

Definition tr codemem (CM:codemem) : mempred :=
fun M ⇒

(coversfnat M cm min (cm min+cm size)) ∧
(∀ f cv,

fmaplook CM f cv →

∃ Ws, ∃ a, fmaplook CMLyt f a ∧ tr codeval cv Ws
∧ ((wordsinmem Ws a) && truemp) M).

Definition extcode in ec : Prop :=
(∀ a Cs Pcs,

ExtCode a = someT (Cs,*Pcs) →
(ec min ≤ a ∧ a+(length Cs) ¡ ec min+ec size)).

Definition tr extcode : codemem → mem → Prop :=
fun CM MM ⇒

∃ M,
(extcode in ec) ∧
(∀ f w G Is,

fmaplook CMLyt f w → fmaplook CM f (cvcode G Is)
→ ExtCode w = noneT) ∧

(coversfnat M ec min (ec min+ec size)) ∧
(∀ a Cs Pcs, ExtCode a = someT (Cs,*Pcs) → cmdsinmem Cs a M) ∧
(appliesto M MM).

246

Definition tr memstate aux (CM:codemem) (DM:datamem) : mempred :=
‘ex fun dm min ⇒ ‘ex fun dm size ⇒

‘(eqdomf CMLyt CM)
& ‘(eqdomf DMLyt DM)
& (((0 |−> ?)
&& ((1 |−> cm min)
&& ((2 |−> dm min))))
&& ((tr codemem CM)
&& (tr datamem DM dm min dm size)))

.

Definition tr memstate (CM:codemem) (DM:datamem) (MM:mem) : Prop :=
∃ M,

tr memstate aux CM DM M
∧ (appliesto M MM)
∧ True (*(∃ mlim, ∀ a, a ≥ mlim → notindomf M a)*).

(* Register file and current program counter *)
Definition tr regfile (Rf :regfile) (R:rfile) : Prop :=

∀ r v w, Rf r = v → R r = w → tr wordval v w.

(* Tail subsets of instruction sequences *)
Inductive subseqis : iseq → iseq → nat → Prop :=

| isubd0 : ∀ Is, subseqis Is Is 0
| isubds : ∀ Is Is’ i n, subseqis Is’ Is n → subseqis Is’ (icons i Is) (S n).

Definition tr pc (CM:codemem) (Is:iseq) (pc:word) : Prop :=
∃ f, ∃ G’, ∃ Is’, ∃ w, ∃ n,

fmaplook CM f (cvcode G’ Is’) ∧ subseqis Is Is’ n ∧ fmaplook CMLyt f w ∧ pc = n + w.

(* The top-level translation relation between RgnTAL programs and machine states *)

Definition maxrgnprop (CM:codemem) (DM:datamem) (R:regfile) :=
∃ maxp,

∀ p, (rgn in codemem CM p ∨

rgn in datamem DM p ∨

rgn in regfile R p) → le p maxp.

Inductive tr program : codemem → progstate → state → Prop :=
| tr prog :

∀ CM DM R Is MM RR pc,
tr extcode CM MM →

maxrgnprop CM DM R →

tr memstate CM DM MM →

tr regfile R RR →

247

tr pc CM Is pc →
tr program CM (DM,R,Is) (MM,RR,pc).

End sizevars.
End rgntal2tis.

B.7 Correctness of RgnTAL to CAP Translation

Section Proofs.

Variable ExtCode : extcodety.
Variable CMLyt : heaplyt.
Variables ec min ec size cm min cm size : word.

A custom safety policy
Definition MySP (St:state) :=

match St with (M,R,pc) ⇒
let dm min := (M 2) in
let dm size := (M dm min) in

match (curcmd St) with
| ld rd rs n ⇒ let a:=(R rs)+n in dm min ¡ a ¡ (dm min+dm size)

∨ (ec min ≤ pc ¡ (ec min+ec size))
| st rd n rs ⇒ let a:=(R rd)+n in dm min ¡ a ¡ (dm min+dm size)

∨ (ec min ≤ pc ¡ (ec min+ec size))
| ⇒ True

end
end.

Definition of CpInv

Definition cpinv (CM:codemem) (T:omega) : pred :=
fun St ⇒ match St with (MM,RR,pc) ⇒

∃ DLyt, ∃ RLyt, ∃ DM, ∃ RF, ∃ MT, ∃ Ts, ∃ A, ∃ G,
instcodetype T Ts (tcode A G) ∧
wf state CM DM RF MT A G ∧

tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM ∧

tr regfile DLyt RLyt CMLyt RF RR ∧

maxrgnprop CM DM RF
end.

Constraints on CpGen

Definition ext in ct (CT:cdspec) : Prop :=
∀ w Cs P,

ExtCode w = someT (Cs ,* P) →
CT w = someT (length Cs ,* P).

248

Definition cmcode in ct (CT:cdspec) (CM:codemem) : Prop :=
∀ f G Is w,

fmaplook CM f (cvcode G Is) →
fmaplook CMLyt f w →

CT w = someT (iseq size Is ,* cpinv CM G).

Definition cmstub in ext (CM:codemem) : Prop :=
∀ f G w,

fmaplook CM f (cvstub G) →
fmaplook CMLyt f w →

∃ Cs, ∃ P, ExtCode w = someT (Cs ,* P).

Definition cmlyt in ct (CT:cdspec) : Prop :=
∀ f w,

fmaplook CMLyt f w →

∃ P, CT w = someT P.

Definition ct from ext or cm (CT:cdspec) (CM:codemem) : Prop :=
∀ w n P,

CT w = someT (n ,* P) →
(∃ Cs, ExtCode w = someT (Cs ,* P) ∧ n = length Cs)
∨

(∃ f, ∃ G, ∃ Is,
fmaplook CM f (cvcode G Is) ∧
fmaplook CMLyt f w ∧

n = iseq size Is ∧
P = cpinv CM G).

Definition ext interf corr (CM:codemem) : Prop :=
∀ w Cs P,

ExtCode w = someT (Cs ,* P) →
(∀ f G,

fmaplook CM f (cvstub G) →
fmaplook CMLyt f w →

(∀ St, cpinv CM G St →
ec min ≤ (curpc St) →
(curpc St)+(length Cs) ¡ ec min + ec size →
P St)).

Definition iscpgen (CT:cdspec) (CM:codemem) : Prop :=
onetoonef CMLyt ∧
ext in ct CT ∧

cmcode in ct CT CM ∧

cmstub in ext CM ∧

249

cmlyt in ct CT ∧

ct from ext or cm CT CM ∧

ext interf corr CM.

Utility lemmas

Lemma regt neq reg neq
: ∀ r r’, r 6= r’ → regt2reg r 6= regt2reg r’.

Lemma limmapstarfp eqf
: ∀ B1 B2 Lim (H H’:natfmap B1) eP M,

eqf H H’ →
limmapstarfp B1 B2 Lim H eP M →

limmapstarfp B1 B2 Lim H’ eP M.

Lemma limmapstarfp fmaplook and limmapstar fmapdel :
∀ B1 B2 flim F P M n b,

limmapstarfp B1 B2 flim F P M →

fmaplook F n b →

((P n b) && (limmapstarfp B1 B2 flim (fmapdelN F n) P)) M.

Lemma limmapstarfp fmaplook and truefp :
∀ B1 B2 flim F P M n b,

limmapstarfp B1 B2 flim F P M →

fmaplook F n b →

((P n b) && (@truefp)) M.

Lemma tr datamem aux tr heap M :
∀ DLyt RLyt dmlim DM M p H,

tr datamem aux DLyt RLyt CMLyt dmlim DM M →

(fmaplook DM p H) →
((tr heap DLyt RLyt CMLyt p H) && (truemp)) M.

Lemma tr heapval tr wordval :
∀ DLyt RLyt hplim H M a p l v0 v1,
tr hvs DLyt RLyt CMLyt p a hplim H M →

(fmaplook H l [v0,v1]) →
∃ a,
(‘ex (fun w0 ⇒ ‘ex (fun w1 ⇒

‘(tr dataptr DLyt p l = Some a) &
‘(tr wordval DLyt RLyt CMLyt v0 w0) &
‘(tr wordval DLyt RLyt CMLyt v1 w1) &
((a |−> w0) && ((a+1) |−> w1)))) && truemp) M.

Lemma tr heap tr wordval :

250

∀ DLyt RLyt H M p l v0 v1,
tr heap DLyt RLyt CMLyt p H M →

fmaplook H l [v0,v1] →
∃ a,
(‘ex (fun w0 ⇒ ‘ex (fun w1 ⇒

‘(tr dataptr DLyt p l = Some a) &
‘(tr wordval DLyt RLyt CMLyt v0 w0) &
‘(tr wordval DLyt RLyt CMLyt v1 w1) &
((a |−> w0) && ((a+1) |−> w1)))) && truemp) M.

Lemma tr memstate tr wordval :
∀ DLyt RLyt CM DM MM

RF RR p H l v0 v1 r,
tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM →

tr regfile DLyt RLyt CMLyt RF RR →

fmaplook DM p H →

fmaplook H l [v0, v1] →
RF r = wl p l →
tr wordval DLyt RLyt CMLyt v0 (MM (RR r + 0)) ∧
tr wordval DLyt RLyt CMLyt v1 (MM (RR r + 1)).

Lemma appliesto eqf
: ∀ M MM M1 M2 (x:disjf M1 M2),

appliesto M MM →

eqf (appendf x) M →

appliesto M1 MM.

Lemma appliesto pappendf left :
∀ MM M M1 M2,

appliesto M MM →

pappendf M1 M2 M →

appliesto M1 MM.

Lemma appliesto pappendf right :
∀ MM M M1 M2,

appliesto M MM →

pappendf M1 M2 M →

appliesto M2 MM.

Lemma cmdsin flatten
: ∀ Cs M MM w,

cmdsinmem Cs w M → appliesto M MM → flatten Cs MM w.

Lemma triseq size eq :
∀ Lyt Is Cs, tr iseq Lyt Is Cs → length Cs = iseq size Is.

251

Lemma tr iseq subseq :
∀ n Is Is’ Ws MM a,

subseqis Is Is’ n →

tr iseq CMLyt Is’ (map Dc Ws) →
flatten (map Dc Ws) MM a →

∃ Ws’,
tr iseq CMLyt Is (map Dc Ws’) ∧ flatten (map Dc Ws’) MM (n+a).

Lemma not listnth nil :
∀ A n p, ˜(listnth A nil n)=(Some p).

Main lemmas and proofs

Preservation of CpInv for RgnTAL instructions

Lemma cpinv preserv add :
∀ CM A G rd rs rt Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (iadd rd rs rt) Is))
(D2 : curcmd St = (add rd rs rt)),
cpinv CM (tcode A (rft upd G rd tint)) (Step St).

Lemma cpinv preserv addi :
∀ CM A G rd rs t Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (iaddi rd rs t) Is))
(D2 : curcmd St = (addi rd rs t)),
cpinv CM (tcode A (rft upd G rd tint)) (Step St).

Lemma cpinv preserv mov :
∀ CM A G rd rs Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (imov rd rs) Is))
(D2 : curcmd St = (mov rd rs)),
cpinv CM (tcode A (rft upd G rd (G rs))) (Step St).

Lemma cpinv preserv movi :
∀ CM A G rd s Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (imovi rd s) Is))
(D2 : curcmd St = (movi rd s)),
cpinv CM (tcode A (rft upd G rd tint)) (Step St).

Lemma cpinv preserv movf :
∀ CM A G rd f Is St a

252

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (imovf rd f) Is))
(D2 : curcmd St = (movi rd a))
(D3 : fmaplook CMLyt f a),
∃ cv, ∃ t,

fmaplook CM f cv ∧

eqtype t (codevaltype cv) ∧
cpinv CM (tcode A (rft upd G rd t)) (Step St).

Lemma cpinv preserv ld :
∀ CM A G rd rs n Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (ild rd rs n) Is))
(D2 : curcmd St = (ld rd rs n)),
∃ t, ∃ t1, ∃ t2, ∃ g,

(n = 0 ∧ t = t1 ∨ n = 1 ∧ t = t2) ∧
G rs = tpair t1 t2 g ∧

cpinv CM (tcode A (rft upd G rd t)) (Step St).

Lemma tr memstate heap update0 :
∀ DLyt RLyt CM DM MM

RF RR p H l v0 v1 rd rs,
tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM →

tr regfile DLyt RLyt CMLyt RF RR →

fmaplook DM p H →

fmaplook H l [v0, v1] →
RF rd = wl p l →
tr memstate DLyt RLyt CMLyt cm min cm size CM

(dm upd DM p (hp upd H l [RF rs, v1]))
(updatemem MM (RR rd) (RR rs)).

Lemma tr memstate heap update1 :
∀ DLyt RLyt CM DM MM

RF RR p H l v0 v1 rd rs,
tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM →

tr regfile DLyt RLyt CMLyt RF RR →

fmaplook DM p H →

fmaplook H l [v0, v1] →
RF rd = wl p l →
tr memstate DLyt RLyt CMLyt cm min cm size CM

(dm upd DM p (hp upd H l [v0, RF rs]))
(updatemem MM (RR rd + 1) (RR rs)).

253

Lemma cpinv preserv st :
∀ CM A G rd n rs Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (ist rd n rs) Is))
(D2 : curcmd St = (st rd n rs)),
cpinv CM (tcode A G) (Step St).

Lemma cpinv preserv appr :
∀ CM A G r p Is St

(D0 : cpinv CM (tcode A G) St)
(D1 : wf iseq CM A G (icons (iappr r p) Is))
(D2 : curcmd St = (mov r r)),
∃ Fr,

G r = tabsr Fr ∧
cpinv CM (tcode A (rft upd G r (Fr p))) (Step St).

Load and store RgnTAL instructions respect the custom safety policy
Lemma wf iseq ld MySP :

∀ DLyt RLyt CM DM MM
RF RR pc MT A G rd rs n Is,

wf state CM DM RF MT A G →

tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM →

tr regfile DLyt RLyt CMLyt RF RR →

wf iseq CM A G (icons (ild rd rs n) Is) →
curcmdp (MM, RR, pc) (ld rd rs n) →
MySP (MM, RR, pc).

Lemma wf iseq st MySP :
∀ DLyt RLyt CM DM MM

RF RR pc MT A G rd rs n Is,
wf state CM DM RF MT A G →

tr memstate DLyt RLyt CMLyt cm min cm size CM DM MM →

tr regfile DLyt RLyt CMLyt RF RR →

wf iseq CM A G (icons (ist rd n rs) Is) →
curcmdp (MM, RR, pc) (st rd n rs) →
MySP (MM, RR, pc).

RgnTAL-CAP instruction safety
Lemma rgntal2wfcapcmds :
∀ CT CM Is T Ws Cs

(D0 : iscpgen CT CM)
(D1 : extcode in ec ExtCode ec min ec size)
(D2 : tr codeval CMLyt (cvcode T Is) Ws)

254

(D3 : Cs = map Dc Ws)
(D4 : ∀ Ts A G, instcodetype T Ts (tcode A G)

→ wf iseq CM A G Is),
WFCapCmds MySP CT (cpinv CM T) Cs.

RgnTAL-CAP code heap safety

Lemma rgntal2wfcapcdspec :
∀ DLyt RLyt CT CM DM R Is MM RR pc

(D0:iscpgen CT CM)
(D1:wf program (CM, (DM,R,Is)))
(D2:tr program ExtCode DLyt RLyt CMLyt ec min ec size

cm min cm size CM (DM,R,Is) (MM,RR,pc))
(extcode wf : ∀ f Cs P,

ExtCode f = someT (Cs ,* P) →
∀ CT’, iscpgen CT’ CM → WFCapCmds MySP CT’ P Cs),

WFCapcdspec MySP MM CT.

RgnTAL-CAP safety theorem

Theorem rgntal2cap :
∀ DLyt RLyt CT CM DM R Is St

(D0:iscpgen CT CM)
(D1:wf program (CM, (DM,R,Is)))
(D2:tr program ExtCode DLyt RLyt CMLyt ec min ec size

cm min cm size CM (DM,R,Is) St)
(extcode wf : ∀ f Cs P,

ExtCode f = someT (Cs ,* P) →
∀ CT’, iscpgen CT’ CM → WFCapCmds MySP CT’ P Cs),

WFCapstate MySP St.

End Proofs.

B.8 RgnTAL Runtime System

The free region library function

Definition freergn cmds : cmdlist :=
(movi rI 2) :: (ld rI rI 0) :: (ld rJ rI 1) :: (st rA 2 rJ) :: (st rI 1 rA) :: (jmp rH) :: (@nil cmd).

Definition talregs : list reg := rA::rB::rC::rD::rE::rF::rG::rH::(nil).

Fixpoint eqonregs (rs:list reg) : rfile → rfile → Prop :=
fun R R’ ⇒

match rs with

255

| (r’::rs’) ⇒ (R r’) = (R’ r’) ∧ (eqonregs rs’ R R’)
| ⇒ True

end.

Section Proofs.

Variables ec min ec size cm min cm size : word.

Definition freergn jmp req
(CT:cdspec) RR (PmemA PmemB:mempred) dmmin dmsize
: Prop :=
∃ n, ∃ Q, CT(RR rH) = someT (n,*Q) ∧

∀ (M:fmap word word) (MM:mem) RR’ fp,
(appliesto M MM) ∧
(PmemA && (2 |−> dmmin)) &&
((fun Md ⇒ (∀ a, indomf Md a → ˜(iscodearea CT a 1))) &
(fun Md ⇒ (coversfnat Md dmmin (dmmin+dmsize))) &
(PmemB && (dmmin |−> dmsize)

&& ((dmmin+1) |−> fp)
&& (freelist fp)))

M ∧

(eqonregs talregs RR RR’)
→ Q(MM,RR’,RR rH).

Definition freergn req
: cdspec → pred → Prop :=
fun CT Pfree ⇒

∀ St, Pfree(St) →
match St with ((MM,RR),pc) ⇒

ec min ≤ pc ∧ (pc + (length freergn cmds)) ¡ ec min+ec size
∧

∃ M, ∃ PmemA, ∃ PmemB,
∃ dmmin, ∃ dmsize, ∃ fp, ∃ rsize, ∃ nxt,

(appliesto M MM) ∧
(PmemA && (2 |−> dmmin)) &&
((fun Md ⇒ (∀ a, indomf Md a → ˜(iscodearea CT a 1))) &

(fun Md ⇒ (coversfnat Md dmmin (dmmin+dmsize))) &
(PmemB && (freeblock (RR rA) rsize nxt)

&& (dmmin |−> dmsize)
&& ((dmmin+1) |−> fp)
&& (freelist fp)))

M ∧

(freergn jmp req CT RR PmemA PmemB dmmin dmsize)

256

end.

Lemma coversfnat fmapupd
: ∀ B M min size a b,

coversfnat B M min size →
indomf M a →

coversfnat B (fmapupd beq nat M a b) min size.

Lemma singfp fmapupdN
: ∀ B a b’ b (M:fmap nat B),

a |−> b’ M →

a |−> b (fmapupd beq nat M a b).

Proving CAP safety of the library code
Lemma freergn wfcap

: ∀ CT Pfree
(D:freergn req CT Pfree),
WFCapCmds (MySP ec min ec size) CT (Pfree) (freergn cmds).

RgnTAL type for the free region library call

Definition freergn type : omega :=
tabsr (fun p ⇒

tabsc (fun c ⇒
tabscd (uniqcap p) c (fun Djcp ⇒

tabst (
(* a1 = 5 *)

tvabst (
(* a2 = 4 *)

tvabst (
(* a3 = 3 *)

tvabst (
(* a4 = 2 *)

tvabst (
(* a5 = 1 *)

tvabst (
(* a6 = 0 *)

tvcode 6 (pluscap (uniqcap p) c Djcp)
(fun r ⇒

match r with
| r0 ⇒ (tvlift (tvlift (tvlift (tvlift

(tvlift (tvlift 0 (tvhandle p)))))))
| r1 ⇒ (tvvar 5)
| r2 ⇒ (tvlift (tvvar 4))

257

| r3 ⇒ (tvlift (tvlift (tvvar 3)))
| r4 ⇒ (tvlift (tvlift (tvlift (tvvar 2))))
| r5 ⇒ (tvlift (tvlift (tvlift (tvlift (tvvar 1)))))
| r6 ⇒ (tvlift (tvlift (tvlift

(tvlift (tvlift (tvvar 0))))))
| ⇒ (tvabst 6 (

(* a0 = 1 *)
tvabst 7 (

(* a7 = 0 *)
tvcode 8 (c)

(fun r ⇒
match r with

| r0 ⇒ (tvlift (tvlift (tvlift
(tvlift (tvlift (tvlift

(tvvar 1)))))))
| r1 ⇒ (tvvar 7)
| r2 ⇒ (tvlift (tvvar 6))
| r3 ⇒ (tvlift (tvlift (tvvar 5)))
| r4 ⇒ (tvlift (tvlift

(tvlift
(tvvar 4))))

| r5 ⇒ (tvlift (tvlift
(tvlift (tvlift

(tvvar 3)))))
| r6 ⇒ (tvlift (tvlift

(tvlift (tvlift (tvlift
(tvvar 2))))))

| r7 ⇒ (tvlift (tvlift (tvlift
(tvlift (tvlift (tvlift
(tvlift (tvvar 0))))))))

end)
)))

end)))))))))).

Definition cpinvshort :=
fun CMLyt CM ⇒

(cpinv CMLyt cm min cm size CM).

Definition cpinv’ :=
fun CMLyt CM t (cmds:cmdlist) ⇒

fun (St:state) ⇒
let (p,pc) := St in let (MM,RR) := p in

258

(ec min ≤ pc) ∧
(pc + length cmds ¡ ec min + ec size) ∧
(cpinvshort CMLyt CM t St).

Definition iscpgen’ :=
fun EC CMLyt CT CM ⇒

(iscpgen EC CMLyt ec min ec size cm min cm size CT CM).

Lemmas

Lemma trdatamem fmapdel trheap
: ∀ DLyt RLyt CMLyt dm min dm size DM M g h,

fmaplook DM g h →

tr datamem DLyt RLyt CMLyt DM dm min dm size M →

(‘ex fun dmlim ⇒ ‘ex fun fp ⇒

(fun M ⇒ coversfnat M dm min (dm min+dm size)) &
‘(limitf DM dmlim) &
((dm min |−> dm size)

&& ((dm min+1) |−> fp)
&& (freelist fp)
&& (tr datamem aux (fmapdelN DLyt g)

RLyt CMLyt dmlim (fmapdelN DM g))
&& (tr heap DLyt RLyt CMLyt g h)
)) M.

Lemma tr hvs ptrtoanylist
: ∀ DLyt RLyt CMLyt hplim g a h M,

tr hvs DLyt RLyt CMLyt g a hplim h M →

ptrtoanylist a (hvlist size hplim h) M.

Lemma ptrtoanylist eqf
: ∀ n a M1 M2,

eqf M1 M2 →

ptrtoanylist a n M1 →

ptrtoanylist a n M2.

Lemma ptrtoanylist concat
: ∀ n a m M M1 M2,

pappendf M1 M2 M →

ptrtoanylist a n M1 →

ptrtoanylist (a+n) m M2 →

ptrtoanylist a (n+m) M.

Lemma tr hvs plus ptrtoanylist

259

: ∀ DLyt RLyt CMLyt M M1 M2 g a hplim h n rsize,
(hvlist size hplim h) + n = rsize →
pappendf M1 M2 M →

tr hvs DLyt RLyt CMLyt g (a + 3) hplim h M2 →

ptrtoanylist (a + 3 + hvlist size hplim h) n M1 →

ptrtoanylist (a + 3) rsize M.

Lemma memtype tpair
: ∀ CM M MT p l t,

wf datamem CM M MT →

memtypeof MT p l t →
∃ t1, ∃ t2, t = (tpair t1 t2 p).

Lemma memtype gc wf wordval
: ∀ CM M MT v t g,

wf datamem CM M MT →

wf wordval CM MT v t →
wf wordval CM (fmapdelN MT g) v t.

Lemma memtype gc wf regfile
: ∀ CM M MT RF G g,

wf datamem CM M MT →

wf regfile CM MT RF G →

wf regfile CM (fmapdelN MT g) RF G.

Lemma memtype gc sat cap memtype
: ∀ MT A g c D,

eqcap A (pluscap (uniqcap g) c D) →
sat cap memtype MT A →

sat cap memtype (fmapdelN MT g) c.

Lemma tr wordval fmapdelheaplyt
: ∀ DLyt RLyt CMLyt v w g,

tr wordval DLyt RLyt CMLyt v w →

tr wordval (fmapdelN heaplyt DLyt g) RLyt CMLyt v w.

Lemma tr regfile fmapdelheaplyt eqregs
: ∀ DLyt RLyt CMLyt RF RR RR’ g,

tr regfile DLyt RLyt CMLyt RF RR →

eqonregs talregs RR RR’ →
tr regfile (fmapdelN heaplyt DLyt g) RLyt CMLyt RF RR’.

Fixpoint typevarsof (v:wordval) : list constr → list constr :=
fun ts ⇒

match v with

260

| wappr w p ⇒ typevarsof w ((c rgn p)::ts)
| wappc w c ⇒ typevarsof w ((c cap c)::ts)
| wappcd c1 c2 w Dj ⇒ typevarsof w ((c disj Dj)::ts)
| wappt w t ⇒ typevarsof w ((c type t)::ts)
| ⇒ ts

end.

Lemma memtype not codetype
: ∀ CM M MT p l t,

wf datamem CM M MT →

memtypeof MT p l t →
¬iscodetype t.

Lemma instcodetype cons r
: ∀ t ts r t’ F,

instcodetype t ts t’ →
eqtype t’ (tabsr F) →
instcodetype t (ts ++ (c rgn r::nil)) (F r).

Lemma instcodetype cons c
: ∀ t ts c t’ F,

instcodetype t ts t’ →
eqtype t’ (tabsc F) →
instcodetype t (ts ++ (c cap c::nil)) (F c).

Lemma instcodetype cons cb
: ∀ t ts c A t’ F,

instcodetype t ts t’ →
subcap c A →

eqtype t’ (tabscb F A) →
instcodetype t (ts ++ (c cap c::nil)) (F c).

Lemma instcodetype cons t
: ∀ t t’ ts o t” F,

instcodetype t ts t’ →
eqtype t’ (tabst F) →
(unliftV0 (substV F (lifttoV o))) = t” →

instcodetype t (ts ++ (c type o::nil)) t”.

Lemma typevarsof app
: ∀ v t ts,

typevarsof v (t :: ts) = (typevarsof v nil) ++ (t :: ts).

Lemma instcodetype trans
: ∀ T ts t,

261

instcodetype T ts t →
∀ ts’ t’,

instcodetype t ts’ t’ →
instcodetype T (ts ++ ts’) t’.

Lemma wf wordval codetype inst
: ∀ CM M MT v t (Dwf :wf datamem CM M MT),

wf wordval CM MT v t →
iscodetype t →
∃ f, ∃ cv, ∃ cvt,

stripabs(v) = Some f ∧
fmaplook CM f cv ∧

instcodetype (codevaltype cv) (typevarsof v nil) cvt ∧
eqtype cvt t.

(* Finally, prove that the RgnTAL type satisfies the pre- and post-condition requirements for the
freergn library function *)

Definition freergn pred
: heaplyt → codemem → pred
:= fun CMLyt CM St ⇒ (cpinv’ CMLyt CM freergn type freergn cmds St).

Theorem freergn type req
: ∀ CT EC CMLyt CM (Dx:extcode in ec EC ec min ec size),

iscpgen’ EC CMLyt CT CM →

freergn req CT (freergn pred CMLyt CM).

End Proofs.

262

Appendix C

Computing Fibonacci Numbers in

RgnTAL

In this chapter, I give an example program written in RgnTAL to demonstrate the lan-

guage and the use of the runtime library functions. The program will be one to compute

the nth pair of Fibonacci numbers. In ML, the code would look like the following:

fun fib 0 (a,b) = (a,b)

| fib n (a,b) = fib (n-1) (b, a+b);

This function recurses on an integer parameter n and a pair of Fibonacci numbers (a,b).

This high-level code hides the details of how memory for the pairs is allocated and deal-

located. A version of the same program at the C level of abstraction would be:

pair* fib(int n, pair* f /* in p */ , rgnblock* p) {

if (n == 0) return f;

int a = f.snd;

int b = f.fst + f.snd;

rgnblock* p’ = newrgn();

freergn(p);

pair* f’ = alloc(p’, a, b);

return fib(n-1, f’, p’);

}

This code uses the data structures and associated operations defined in Figure 5.14 to

create and delete regions and allocate data. Note the overlapping lifetimes of regions

263

p and p’ and also the fact that the region pointers are explicitly passed along function

calls. Of course, we are interested in a version of this fib code compiled to a well-typed

RgnTAL program.

For our RgnTAL version, we first define the interfaces for the region library primitives:

freergn =

stub[ρ, ε, α1, α2, α3, α4, α5, α6]

({ρ1}⊕ ε,
{ r0 : ρ handle, r1 : α1, . . . , r6 : α6,

r7 :∀[α0, α7](ε, {r0 : α0, . . . , r[7] : α7})

}).∅

newrgn =

stub[ε, α0, α1, α2, α3, α4, α5, α6]

(ε,
{r0 : α0, . . . , r6 : α6,

r7 :∀[ρ, α7]({ρ
1}⊕ ε, {r0 : ρ handle, r1 : α1, . . . , r7 : α7})

}).∅

alloc =

stub[ρ, ε, ε0 ≤{ρ+}⊕ ε, α3, α4, α5, α6]

(ε0,
{r0 : ρ handle, r1 : int, r2 : int, r3 : α3, . . . , r6 : α6,
r7:∀[α2, α7](ε0, {r0:ρ handle, r1:〈int × int〉 at ρ, r2 : α2, . . . , r7 : α7})

}).∅

Recall, the syntax for RgnTAL stub values is stub [∆](A,Γ).∅ where ∆ is a list of con-

structor variables, parameterizing over region names, capabilities, or types; A is the set of

capabilities that the code needs in order to execute; and Γ is the type that must be satisfied

by the register file. freergn above requires a unique capability for a given region, ρ, and

also a handle to that region in register r0. Since the capability for that region is unique,

the type system can ensure that there are no other region variables or names active in the

program that alias ρ – thus it will be safe to free it and remove that capability from the set

of capabilities ε in the continuation (in register r7).

newrgn can be invoked with any current capability set ε and a continuation pointer

in register r7 that expects a new, unique region to be added to ε. The alloc function

requires a capability set ε0 in which the region ρ is accessible, whether it is aliased or not

264

halt_type =

∀[ρ, ε, α2, α3, α4, α5, α6, α7]
({ρ1}⊕ ε, { r0 : 〈int × int〉 at ρ, r1 : ρ handle, r2 : α2, . . . , r7 : α7 })

fib_entry =

code[ρ, ε, α3, α4, α5, α6]

({ρ1}⊕ ε,
{ r0 : int, r1 : 〈int × int〉 at ρ, r2 : ρ handle, r3 : α3, . . . , r6 : α6, r7 :halt_type })

bgti r0, 0, fib_loop_addr[ρ, ε, α3, α4, α5, α6]

mov r0, r1

mov r1, r2

jmp r7[ρ, ε, ρ handle, α3, α4, α5, α6, halt_type]

fib_loop =

code[ρ, ε, α3, α4, α5, α6]

({ρ1}⊕ ε,
{ r0 : int, r1 : 〈int × int〉 at ρ, r2 : ρ handle, r3 : α3, . . . , r6 : α6, r7 :halt_type })

subi r0, r0, 1 // n--

ld r3, r1, 1 // r3 = f.snd

ld r4, r1, 0 // r4 = f.fst

add r4, r4, r3 // r4 = f.fst + f.snd

mov r5, r0 // r5 = n --- save n

mov r6, r7 // save TAL ret ptr

movf r7, fib_free_addr

tapp r7 [ρ]
tapp r7 [ε]
jd newrgn_addr[{ρ1}⊕ ε, int, 〈int × int〉 at ρ, ρ handle, int, int, int, halt_type]

fib_free =

code[ρ, ε, ρ0, α7]

({ρ0
1}⊕ ({ρ1}⊕ ε),

{ r0 : ρ0 handle, r1 : 〈int × int〉 at ρ, r2 : ρ handle, r3 : int, r4 : int, r5 : int,
r6 :halt_type, r7 : α7 })

mov r1, r0 // r1 = ρ0 handle --- save it

mov r0, r2 // r0 = ρ handle --- to be freed

movf r7, fib_alloc_addr

tapp r7 [ρ0]

tapp r7 [ε]
tapp r7 [ρ handle] // will be unusable afterwards

jd freergn_addr[ρ, {ρ0
1}⊕ ε, ρ0 handle, ρ handle, int, int, int, halt_type]

Figure C.1: RgnTAL fib function blocks (1 of 2).

265

fib_alloc =

code[ρ, ε, α2, α0, α7]

({ρ1}⊕ ε,
{r0 : α0, r1 : ρ handle, r2 : α2, r3 : int, r4 : int, r5 : int, r6 :halt_type, r7 : α7})

mov r0, r1 // r0 = ρ handle

mov r1, r3 // r1 = f.snd

mov r2, r4 // r2 = f.fst + f.snd

mov r7, fib_ret_addr

tapp r7 [ρ]
tapp r7 [ε]
tapp r7 [int]

tapp r7 [int]

jd alloc_addr[ρ, ε, {ρ1}⊕ ε, int, int, int, halt_type]

fib_ret =

code[ρ, ε, α3, α4, α2, α7]

({ρ1}⊕ ε,
{r0 : ρ handle, r1 : 〈int × int〉 at ρ, r2 : α2, r3 : α3, r4 : α4, r5 : int,

r6 :halt_type, r7 : α7})

mov r2, r0 // r2 = ρ handle

mov r0, r5 // restore n to r0

mov r7, r6 // restore TAL ret ptr

jd fib_entry_addr[ρ, ε, α3, α4, int, halt_type]

halt =

code[ρ, ε, α2, α3, α4, α5, α6, α7]

({ρ1}⊕ ε,
{r0 : 〈int × int〉 at ρ, r1 : ρ handle, r2 : α2, . . . , r7 : α7})

jd halt_addr[ρ, ε, α2, α3, α4, α5, α6, α7]

Figure C.2: RgnTAL fib function blocks (2 of 2).

266

Definition fib_loop_type : omega :=

tabsr (fun p => (* \rho *)

tabsc (fun c => (* \epsilon *)

tabscd (uniqcap p) c (fun Djcp => (* p and c disjoint *)

tabst ((* \alpha_3 *)

(tvabst _ (* \alpha_4 *)

(tvabst _ (* \alpha_5 *)

(tvabst _ (* \alpha_6 *)

(tvcode 4 ((uniqcap p) (+) c \ Djcp)

(fun r => match r with

| r0 => tvlift4 (tvint)

| r1 => tvpair _ (tvlift4 (tvint)) (tvlift4 (tvint)) p

| r2 => tvlift4 (tvhandle p)

| r3 => V 3

| r4 => tvlift (V 2)

| r5 => tvlift2 (V 1)

| r6 => tvlift3 (V 0)

| r7 =>

(tvabsr _ (fun p’ =>

(tvabsc _ (fun c’ =>

(tvabscd _ (uniqcap p’) c’ (fun Djcp’ =>

(tvabst _ (* \alpha_2 *)

(tvabst _ (* \alpha_7 *)

(tvcode 6 ((uniqcap p’) (+) c’ \ Djcp’)

(fun r =>

match r with

| r0 => tvpair _ (tvlift6 tvint) (tvlift6 tvint) p’

| r1 => tvlift6 (tvhandle p’)

| r2 => tvlift4 (V 1)

| r3 => tvlift6 tvint

| r4 => tvlift6 tvint

| r5 => tvlift6 tvint

| r6 => tvlift6 tvint

| r7 => tvlift5 (V 0) end)))))))))) end))))))))).

Definition fib_loop_cmds : ciseq :=

ciabsr (fun p => ciabsc (fun c => ciabsd (uniqcap p) c (fun Djcp =>

ciabst (fun a3 => ciabst (fun a4 => ciabst (fun a5 => ciabst (fun a6 =>

cibase (icons (isubi r0 r0 1) (* n-- *)

(icons (ild r3 r1 1) (* r3 = f.snd *)

(icons (ild r4 r1 0) (* r4 = f.fst *)

(icons (iadd r4 r4 r3) (* r4 = f.fst + f.snd *)

(icons (imov r5 r0) (* r5 = n // save n *)

(icons (imov r6 r7) (* save TAL retptr *)

(icons (imovf r7 fib_free_addr)

(icons (iappr r7 p)

(icons (iappc r7 c)

(icons (iappcd _ _ r7 Djcp)

(ijd newrgn_addr)))))))))))))))))).

Definition fib_loop_cv : codeval := cvcode fib_loop_type fib_loop_cmds.

Figure C.3: RgnTAL fib loop block in Coq

267

– hence the use of the bounded quantification. alloc will create a new, initialized (using

the values of r1 and r2) pair of data in that region and pass a pointer to the new pair on to

the continuation pointer.

We can now write the main program. Because RgnTAL programs are written in continuation-

passing style (CPS), the fib function is actually split into several blocks, each of which

perform some statements and then call one of the region library primitives, passing along

a continuation to the next block. The RgnTAL code is listed in Figures C.1 and C.2.

fib_entry tests if the parameter n (stored in r0) is zero, jumping to the halt continua-

tion pointer if so. The halt code expects a pointer to the final pair of Fibonacci numbers

in r0 and a unique handle to the region in r1.

If the base case has not been reached, the fib_entry code branches to the body of

a recursive loop, fib_loop, which decrements n, loads the current Fibonacci pair into

registers and computes the next pair, and then makes a call to the library function, newrgn,

passing the address of the next block, fib_free, as a continuation.

fib_free prepares to free the region in which the old pair of Fibonacci numbers is

stored. Notice that both regions are accessible in the capability of fib_free. The con-

tinuation passed to the freergn library call is the next block, fib_alloc, which prepares

for the allocation and initialization of a new pair in the newly acquired region. Having

allocated a pair, fib_ret restores the data of registers that had been shuffled around and

jumps back to the main entry point, fib_entry.

This code, along with the CAP implementations of the region library primitives, has

been defined and simulated on my prototype CAP machine. The type checking and certi-

fication, however, is only partially complete at the time of this writing, due to the tedious

nature of working with even such moderately complex programs in the Coq proof assis-

tant, as discussed in the main text of the dissertation (e.g. Sections 6.1–6.3). To illustrate,

the Coq definition of the fib_loop code block is given in Figure C.3. This uses the syn-

tax encoding for RgnTAL types and code blocks defined in Figures 5.3 and 5.4, and the

deBruijn representation of types with free variables defined on page 143.

268

Bibliography

[1] A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In J. Von Wright, J.

Grundy, and J. Harrison, editors, Proceedings 9th International Conference on Theorem

Proving in Higher Order Logics TPHOLs ’96, volume 1125 of LNCS, pages 173–190.

Springer-Verlag, 1996.

[2] A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general references

embeddable in higher-order logic. In Proceedings 17th Annual IEEE Symposium on

Logic in Computer Science, pages 75–86, June 2002.

[3] A. W. Appel. Foundational proof-carrying code. In Proceedings 16th Annual IEEE

Symposium on Logic in Computer Science, pages 247–258, June 2001.

[4] A. W. Appel and A. P. Felty. A semantic model of types and machine instructions

for proof-carrying code. In Proceedings 27th ACM Symposium on Principles of Pro-

gramming Languages, pages 243–253. ACM Press, 2000.

[5] A. W. Appel and D. McAllester. An indexed model of recursive types for founda-

tional proof-carrying code. ACM Transactions on Programming Languages and Systems,

23(5):657–683, Sept. 2001.

[6] A. W. Appel, N. G. Michael, A. Stump, , and R. Virga. A trustworthy proof checker.

In Journal of Automated Reasoning, volume 31, pages 231–260, 2003.

[7] B. Barras. Auto-validation d’un systéme de preuves avec familles inductives. PhD thesis,

Université Paris 7, 1999.

269

[8] G. Barthe, P. Courtieu, G. Dufay, and S. Sousa. Tool-assisted specification and veri-

fication of the JavaCard platform. In Proceedings 9th International Conference on Alge-

braic Methodology and Software Technology (AMAST ’02), volume 2422 of LNCS, pages

41–59. Springer-Verlag, 2002.

[9] A. Bernard and P. Lee. Temporal logic for proof-carrying code. In A. Voronkov,

editor, Proceedings of 18th International Conference on Automated Deduction (CADE),

volume 2392 of LNCS, pages 31–46. Springer-Verlag, 2002.

[10] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying

garbage collector. In Proceedings 31st ACM Symposium on Principles of Programming

Languages, pages 220–231. ACM Press, 2004.

[11] R. S. Boyer and Y. Yu. Automated proofs of object code for a widely used micropro-

cessor. Journal of the ACM, 43(1):166–192, Jan. 1996.

[12] R. M. Burstall. Some techniques for proving correctness of programs which alter

data structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages

23–50. Edinburgh University Press, Edinburgh, Scotland, 1972.

[13] C. Calcagno, S. Ishtiaq, and P. W. O’Hearn. Semantic analysis of pointer aliasing,

allocation and disposal in Hoare logic. In M. Gabbrielli and F. Pfenning, editors,

Proceedings 2nd International ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming (PPDP’00), pages 190–201. ACM Press, 2000.

[14] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end

optimization. In Proceedings 2003 ACM Conference on Programming Language Design

and Implementationn, pages 208–219. ACM Press, 2003.

[15] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying compiler

for Java. In Proceedings 2000 ACM Conference on Programming Language Design and

Implementation, pages 95–107. ACM Press, 2000.

270

[16] T. Coquand and G. Huet. The calculus of constructions. Information and Computation,

76:95–120, 1988.

[17] T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf

and G. Mints, editors, Proceedings Colog’88, volume 417 of LNCS. Springer-Verlag,

1990.

[18] K. Crary. Toward a foundational typed assembly language. In Proceedings 30th ACM

Symposium on Principles of Programming Languages, pages 198–211. ACM Press, Jan.

2003.

[19] K. Crary and S. Sarkar. A metalogical approach to foundational certified code.

Technical Report CMU-CS-03-108, School of Computer Science, Carnegie Mellon

University, Pittsburg, PA, Jan. 2003.

[20] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus

of capabilities. In Proceedings 26th ACM Symposium on Principles of Programming

Languages, pages 262–275. ACM Press, 1999.

[21] F.-N. Demers and J. Malenfant. Reflection in Logic, Functional and Object-Oriented

Programming: a Short Comparative Study. In Workshop on Reflection and Metalevel

Architectures and their Applications in AI (IJCAI’95), pages 29–38, August 1995.

[22] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.

In Proceedings 1995 International Conference on Typed Lambda Calculi and Applications

(TLCA ’95), volume 902 of LNCS, pages 124–138. Springer-Verlag, Apr. 1995.

[23] J. Despeyroux and A. Hirschowitz. Higher-order syntax and induction in Coq. In

Proceedings 5th International Conference on Logic Programming and Automated Reason-

ing (LPAR ’94), volume 822 of LNAI, pages 159–173. Springer-Verlag, July 1994.

[24] J. Despeyroux, F. Pfenning, and C. Schurmann. Primitive recursion for higher-order

271

abstract syntax. In Proceedings 3rd International Conference on Typed Lambda Calculi

and Applications (TLCA ’97), LNCS, pages 147–163. Springer-Verlag, 1997.

[25] A. Felty. Semantic models of types and machine instructions for proof-carrying

code. Talk presented at 2000 PCC Workshop, June 2000.

[26] A. P. Felty. Two-level meta-reasoning in Coq. In Proceedings 15th International Confer-

ence on Theorem Proving in Higher Order Logics (TPHOLs ’02), volume 2410 of LNCS,

pages 198–213. Springer-Verlag, Aug. 2002.

[27] J.-C. Filliâtre. The WHY certification tool, tutorial and reference manual.

http://why.lri.fr/, July 2002.

[28] J.-C. Filliâtre. Verification of non-functional programs using interpretations in type

theory. Journal of Functional Programming, 13(4):709–745, 2003.

[29] R. W. Floyd. Assigning meanings to programs. In A. M. Society, editor, Proceedings

of the Symposium on Applied Math. Vol. 19, pages 19–31, 1967.

[30] G. Gillard. A formalization of a concurrent object calculus up to alpha-conversion.

In D. A. McAllester, editor, Proceedings 17th International Conference on Automated

Deduction (CADE), volume 1831 of LNCS, pages 417–432. Springer-Verlag, 2000.

[31] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based

memory management in Cyclone. In Proceedings 2002 ACM Conference on Program-

ming Language Design and Implementationn, pages 282–293. ACM Press, 2002.

[32] N. A. Hamid and Z. Shao. Interfacing hoare logic and type systems for founda-

tional proof-carrying code. In Proceedings 17th International Conference on Theorem

Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of LNCS, pages 118–135.

Springer-Verlag, Sept. 2004.

[33] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach

272

to foundational proof carrying-code. In Proceedings 17th Annual IEEE Symposium on

Logic in Computer Science (LICS’02), pages 89–100. IEEE Computer Society, July 2002.

[34] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to

foundational proof carrying-code. Journal of Automated Reasoning (Special issue on

Proof-Carrying Code), 31(3-4):191–229, Dec. 2003.

[35] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, Jan. 1993.

[36] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Safe and flexible memory man-

agement in Cyclone. Technical Report CS-TR-4514, University of Maryland, College

Park, MD, July 2003.

[37] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580, Oct. 1969.

[38] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning

on systems in higher-order abstract syntax. In Proceedings of ICALP’01, volume 2076

of LNCS, pages 963–978. Springer-Verlag, 2001.

[39] F. Honsell, M. Miculan, and I. Scagnetto. The theory of contexts for first order and

higher order abstract syntax. In M. Lenisa and M. Miculan, editors, Electronic Notes

in Theoretical Computer Science, volume 62. Elsevier, 2002.

[40] W. A. Howard. The formulae-as-types notion of constructions. In To H.B.Curry:

Essays on Computational Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[41] G. Huet. Residual theory in λ-calculus: a formal development. Journal of Functional

Programming, 4(3):371–394, 1994.

[42] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-

tures. In Proceedings 28th ACM Symposium on Principles of Programming Languages,

pages 14–26. ACM Press, 2001.

273

[43] T. Jim, G. Morrisett, D. Grossman, and M. Hicks. Cyclone: A safe dialect of C. In

Usenix Annual Technical Conference, June 2002.

[44] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on

Software Engineering, 3(2):125–143, 1977.

[45] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving Java

compiler. In Proceedings 12th International Conference on Compiler Construction, vol-

ume 2622 of LNCS, pages 106–120. Springer-Verlag, Apr. 2003.

[46] J. McCarthy. Towards a mathematical theory of computation. In Proc. IFIP Congress

62, pages 21–28. North-Holland, 1963.

[47] J. McKinna. Deliverables: a categorical approach to program development in type theory.

PhD thesis, University of Edinburgh, UK, 1992.

[48] N. Michael and A. Appel. Machine instruction syntax and semantics in higher order

logic. In Proceedings 17th International Conference on Automated Deduction, volume

1831 of LNCS, pages 7–24. Springer-Verlag, June 2000.

[49] M. Miculan. Developing (meta)theory of lambda-calculus in the theory of contexts.

Technical Report TR 2001/26, University of Leicester, Siena, 2001.

[50] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker,

S. Weirich, and S. Zdancewic. TALx86: a realistic typed assembly language. In 1999

ACM SIGPLAN Workshop on Compiler Support for System Software, pages 25–35, May

1999.

[51] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly lan-

guage. In X. Leroy and A. Ohori, editors, Proceedings 1998 International Workshop

on Types in Compilation, volume 1473 of LNCS, pages 28–52. Springer-Verlag, March

1998.

274

[52] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly

language. In Proceedings 25th ACM Symposium on Principles of Programming Lan-

guages, pages 85–97. ACM Press, Jan. 1998.

[53] NASA. Mars exploration rover mission press releases.

http://marsrovers.jpl.nasa.gov, 2004.

[54] G. C. Necula. Proof-carrying code. In Proceedings 24th ACM Symposium on Principles

of Programming Languages, pages 106–119. ACM Press, Jan. 1997.

[55] G. C. Necula. Compiling with Proofs. PhD thesis, School of Computer Science,

Carnegie Mellon University, Sept. 1998.

[56] G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In

Proceedings 2nd USENIX Symp. on Operating System Design and Impl., pages 229–243,

1996.

[57] G. C. Necula and P. Lee. The design and implementation of a certifying compiler.

In Proceedings 1998 ACM Conference on Programming Language Design and Implemen-

tation, pages 333–344. ACM Press, 1998.

[58] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In G. Vi-

gna, editor, Special Issue on Mobile Agent Security, volume 1419 of LNCS, pages 61–91.

Springer-Verlag, Mar. 1998.

[59] G. C. Necula and R. R. Schneck. Proof-carrying code with untrusted proof rules.

In M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa, editors, Soft-

ware Security – Theories and Systems, Mext-NSF-JSPS International Symposium (ISSS),

volume 2609 of LNCS, pages 283–298. Springer-Verlag, 2003.

[60] G. C. Necula and R. R. Schneck. A sound framework for untrusted verification-

condition generators. In Proceedings 18th Annual IEEE Symposium on Logic in Com-

puter Science (LICS’03), pages 248–260, June 2003.

275

[61] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that

alter data structures. In L. Fribourg, editor, Computer Science Logic, volume 2142 of

LNCS, pages 1–19. Springer-Verlag, 2001.

[62] C. Paulin-Mohring. Inductive definitions in the system Coq—rules and proper-

ties. In M. Bezem and J. Groote, editors, Proceedings TLCA, volume 664 of LNCS.

Springer-Verlag, 1993.

[63] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings 1988 ACM

Conference on Programming Language Design and Implementation, pages 199–208. ACM

Press, 1988.

[64] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus of

Constructions. In Proceedings 5th Conference on the Mathematical Foundations of Pro-

gramming Semantics, volume 442 of LNCS, pages 209–228. Springer-Verlag, 1990.

technical report CMU-CS-89-209.

[65] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical frame-

work for deductive systems. In Proc. 16th International Conference on Automated De-

duction, volume 1632 of LNCS, pages 202–206. Springer-Verlag, July 1999.

[66] J. C. Reynolds. Lectures on reasoning about shared mutable data structures. IFIP

Working Group 2.3 School/Seminar on State-of-the-Art Program Design Using

Logic, Tandil, Argentina, September 6-13, 2000.

[67] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Pro-

ceedings 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages

55–74. IEEE Computer Society, July 2002.

[68] I. Scagnetto. Reasoning about names in Higher-Order Abstract Syntax. PhD thesis,

Università degli Studi di Udine, Udine, Mar. 2002.

276

[69] R. R. Schneck. Extensible Untrusted Code Verification. PhD thesis, University of Cali-

fornia, Berkeley, May 2004.

[70] R. R. Schneck and G. C. Necula. A gradual approach to a more trustworthy, yet

scalable, proof-carrying code. In A. Voronkov, editor, Proceedings of 18th Interna-

tional Conference on Automated Deduction (CADE), volume 2392 of LNCS, pages 47–

62. Springer-Verlag, 2002.

[71] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and

System Security, 3(1):30–50, Feb. 2000.

[72] C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive recursion for higher-order

abstract syntax. Theoretical Computer Science, 266(1-2):1–57, 2001.

[73] Z. Shao. An overview of the FLINT/ML compiler. In Proceedings 1997 ACM SIG-

PLAN Workshop on Types in Compilation, June 1997.

[74] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for certified bi-

naries. In Proceedings 29th ACM Symposium on Principles of Programming Languages,

pages 217–232. ACM Press, Jan. 2002.

[75] F. Smith, D. Walker, and G. Morrisett. Alias types. In Proceedings 9th European Sympo-

sium on Programming (ESOP 2000), volume 1782 of LNCS, pages 366–381. Springer-

Verlag, June 2000.

[76] K. N. Swadi and A. W. Appel. Typed machine language and its semantics. Prelim-

inary version available at www.cs.princeton.edu/~appel/papers/tml.pdf, July

2001.

[77] G. Tan, A. W. Appel, K. N. Swadi, and D. Wu. Construction of a semantic model for

a typed assembly language. In Proceedings 5th International Conference on Verification,

Model Checking, and Abstract Interpretation (VMCAI ’04), volume 2937 of LNCS, pages

30–43. Springer-Verlag, Jan. 2004.

277

[78] The Coq Development Team. The Coq proof assistant reference manual. Coq release

v7.1, 2001.

[79] The Coq Development Team. The Coq proof assistant reference manual. Coq release

v8.0, 2004.

[80] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-

calculus using a stack of regions. In Proceedings 21st ACM Symposium on Principles

of Programming Languages, pages 188–201. ACM Press, 1994.

[81] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Com-

putation, 132(2):109–176, 1997.

[82] V. Trifonov, B. Saha, and Z. Shao. Fully reflexive intensional type analysis. In Pro-

ceedings 2000 ACM International Conference on Functional Programming, pages 82–93.

ACM Press, Sept. 2000.

[83] J. C. Vanderwaart and K. Crary. A typed interface for garbage collection. In Pro-

ceedings 2003 International workshop on Types in Languages Design and Implementation

(TLDI ’03), pages 109–122. ACM Press, 2003.

[84] D. Walker. Typed Memory Management. PhD thesis, Cornell University, Ithaca, NY,

Jan. 2001.

[85] D. Walker, K. Crary, and G. Morrisett. Typed memory management via static ca-

pabilities. ACM Transactions on Programming Languages and Systems, 22(4):701–771,

2000.

[86] D. Walker and G. Morrisett. Alias types for recursive data structures. In R. Harper,

editor, Proceedings 3rd Workshop on Types in Compilation (TIC 2000), volume 2071 of

LNCS, pages 177–206. Springer-Verlag, June 2001.

[87] T. R. Weiss. Out-of-memory problem caused Mars rover’s glitch. Computerworld.

http://www.computerworld.com, February 4 2004.

278

[88] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, A L’Université Paris

7, Paris, France, 1994.

[89] M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep

embedding. In Proceedings 17th International Conference on Theorem Proving in Higher

Order Logics (TPHOLs 2004), volume 3223 of LNCS, pages 305–320. Springer-Verlag,

Sept. 2004.

[90] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying code.

In Proceedings 3rd IFIP International Conference on Theoretical Computer Science (TCS

2004), 2004.

[91] P. R. Wilson. Uniprocessor garbage collection techniques. In Proceedings Interna-

tional Workshop on Memory Management (ICMM’92), volume 637 of LNCS, pages 1–

42. Springer-Verlag, 1992.

[92] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation:

A survey and critical review. In Proceedings International Workshop on Memory Man-

agement, volume 986 of LNCS, pages 1–116. Springer-Verlag, 1995.

[93] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994.

[94] D. Wu, A. W. Appel, and A. Stump. Foundational proof checkers with small wit-

nesses. In Proceedings 5th ACM-SIGPLAN International Conference on Principles and

Practice of Declarative Programming, pages 264–274, Aug. 2003.

[95] H. Xi and R. Harper. A dependently typed assembly language. In Proceedings 2001

ACM International Conference on Functional Programming, pages 169–180. ACM Press,

Sept. 2001.

[96] D. Yu. Safety Verification of Low-Level Code. PhD thesis, Yale University, New Haven,

CT, Dec. 2004.

279

[97] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic stor-

age allocation. In Proceedings 2003 European Symposium on Programming (ESOP’03),

volume 2618 of LNCS, pages 363–379. Springer-Verlag, Apr. 2003.

[98] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic

storage allocation. Science of Computer Programming, 50(1-3):101–127, 2004.

[99] D. Yu and Z. Shao. Verification of safety properties for concurrent assembly code. In

Proceedings 2004 ACM International Conference on Functional Programming, September

2004.

[100] Y. Yu. Automated proofs of object code for a widely used microprocessor. PhD thesis,

University of Texas at Austin, Austin, TX, 1992.

280

