
Certified Memory Management for Proof-Carrying Code:
A Region-Based Type System and Runtime Library

(Extended Abstract)

Nadeem Abdul Hamid
Berry College

Mt Berry, GA 30149-5014

nadeem@acm.org

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Security, Languages

1. PROBLEM AND MOTIVATION
Proof-Carrying Code (PCC) is a generic framework intended
to facilitate safe execution of code from an unknown or un-
trusted source. The basic idea of PCC, as the name implies,
is that a piece of executable code comes packaged with a
proof of its safety according to some user-specified policy.
The development of this technology has been fueled by re-
search over the past decade in the use of type systems and
logic to verify properties of low-level code (i.e. assembly or
binary machine code).

To date, the majority of such research has focused only on
carrying through the compilation of source code from a sin-
gle high-level language to verifiable object code. There has
not been significant progress in combining such compilation
with certification of that code which is only written at the
systems programming or assembly code level. The runtime
systems of existing frameworks thus include numerous com-
ponents that are not addressed in the PCC safety proof [1,
2]: low-level memory management libraries, garbage collec-
tion, debuggers, marshallers, etc. Furthermore, the issue
of producing a safety proof for code that is compiled and
linked together from two different source languages has not
been addressed, to a great extent.

In this work, we outline a PCC framework that allows for
the construction of certified machine code packages from
typed assembly language, based on a high-level type sys-
tem. The compiled code from a high-level type system will
interface with a similarly certified, low-level memory man-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw,
GA, USA. Copyright 2004 ACM 1-58113-000-0/00/0004 ...$5.00.

agement runtime library. Details of some portions of this
framework have been previously published [4, 3, 10].

2. BACKGROUND AND RELATED WORK
The concept of PCC was introduced by Necula and Lee [6,
5] and a number of variants have been produced by oth-
ers. In particular, an alternate approach to PCC, based on
foundational principles of mathematics and logic was first
pursued by Appel [1] and others. This family of PCC im-
plementations, known as Foundational Proof-Carrying Code
(FPCC), aims at an increased assurance of safety by min-
imizing the amount of code in the FPCC framework that
must be trusted. Our work is based on the FPCC frame-
work and extends it as outlined in Section 1 and the follow-
ing sections.

To produce a PCC package, we must express the concept of
safety that we wish to enforce in some way that can be me-
chanically checked. This is done by using a powerful calculus
based on higher-order predicate logic to encode the defini-
tion and operational semantics of the machine on which code
will be run. We then define the safety policy in terms of the
machine’s encoding. Besides an initial machine state (i.e.
an executable binary), we also require a code producer to
provide a proof that no matter how many steps the machine
executes from the initial state, the safety policy will always
be satisfied.

In order to build the safety proof, we provide a specifica-
tion layer on top of the raw machine encoding which allows
one to use Hoare logic-like reasoning to show that a piece
of code satisfies desired properties. An initial development
of this layer has been previously described in [10]. A funda-
mental principle of PCC is that it is much easier to check
a safety proof than to produce one. Using only Hoare logic
to build a safety proof would be extremely difficult for a
code producer, especially since the ideal goal is that the
production of such proofs would be as automated as pos-
sible. Thus, most source programs will be written in, or
at least compiled to, a version of typed assembly language
(TAL). Type-preserving compilation from a high-level lan-
guage, like Java, to a low-level intermediate language, like
TAL, has been widely studied. Much PCC work has focused
further on the automatic generation of a safety proof from
TAL code.

3. APPROACH AND UNIQUENESS
In our case, we have used a TAL with a high-level region-
based memory management type system that allows the al-
location and deallocation of regions of memory. The type
system is based on the capability calculus of [8]. This al-
lows the programmer explicit, but safe, control over the cre-
ation and deletion of memory objects in a program. In this
work, we have formalized the region-based TAL within the
PCC logic and mechanically proved its soundness. Then,
we show how to compile TAL programs automatically to a
Hoare logic-based safety derivation in the specification layer
described in the previous paragraph.

While most user programs can be written in or compiled to
TAL, there are some pieces of code which cannot be writ-
ten in TAL itself – for instance, the actual implementation
of the memory management runtime system. In particular,
the runtime system consists of standard malloc/free code
which manages a free list and pointers to allocated regions.
To certify this code as safe, we must directly produce a
proof using the low-level reasoning system. The novel fea-
ture of our work is that we also have shown how to “link”
the automatically-generated safety proofs of compiled code
to the manually generated low-level proof of the runtime li-
brary. That means that the entire application in this system
can be shown to satisfy the safety policy.

There are a number of novel features of our development.
First, we have formally encoded and proven the soundness
of a version of TAL with a non-trivial region-based type
system. Second, we demonstrate a new approach to auto-
matically generating a safety proof in the low-level reason-
ing system, based on the compilation of a well-typed TAL
source program. Finally, the biggest advancement is the in-
tegration of safety proofs from different sources and levels
of the code generation process. As mentioned above, de-
scriptions of some of the pieces of this framework have been
previously published. However, the latest, and ongoing de-
velopment has been the instantiation of this framework with
a region-based memory management library.

4. RESULTS AND CONTRIBUTIONS
The initial development of FPCC made it seem extremely
difficult to produce safety proofs based only on the founda-
tions of mathematical logic. Our research has been aimed
at reducing the complexity of such a task. To this end,
we introduced previously a “syntactic” approach to FPCC
which shows the potential of substantial improvement with
respect to the ease and scalability involved in constructing
an FPCC system. The syntactic approach involves encoding
a high-level source type system directly in the safety logic,
and proving the type system’s soundness using the standard
syntactic style of proof [9].

In the current development, we have refined the syntactic
approach by inserting a common Hoare-logic based specifi-
cation layer, which can serve as the target for compilation
from any number of higher-level type systems. This specifi-
cation system then also allows for low-level reasoning about
particularly complex runtime library code that could not
otherwise be programmed safely in most standard type sys-
tems.

For our prototype implementation, we have used a simple,
idealized machine (to avoid dealing with the technical de-
tails of a “real” machine such as the Intel x86 family). We
also use the Coq proof assistant [7] for the formal develop-
ment of proofs. While there are currently limitations of our
prototype framework,1 we believe that the ongoing work on
engineering and technical aspects will be able to produce
the deliverable of a realistic certified system for the next
generation of Proof-Carrying Code.

5. REFERENCES
[1] A. W. Appel. Foundational proof-carrying code. In

Proceedings 16th Annual IEEE Symposium on Logic in
Computer Science, pages 247–258, June 2001.

[2] K. Crary and S. Sarkar. A metalogical approach to
foundational certified code. Technical Report
CMU-CS-03-108, School of Computer Science,
Carnegie Mellon University, Pittsburg, PA, Jan. 2003.

[3] N. A. Hamid and Z. Shao. Interfacing hoare logic and
type systems for foundational proof-carrying code. In
Proceedings 17th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs
2004), volume 3223, pages 118–135, Sept. 2004.

[4] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and
Z. Ni. A syntactic approach to foundational proof
carrying-code. Journal of Automated Reasoning
(Special issue on Proof-Carrying Code),
31(3-4):191–229, Dec. 2003.

[5] G. C. Necula. Proof-carrying code. In Proceedings 24th
ACM Symposium on Principles of Programming
Languages, pages 106–119. ACM Press, Jan. 1997.

[6] G. C. Necula and P. Lee. Safe kernel extensions
without run-time checking. In Proceedings 2nd
USENIX Symp. on Operating System Design and
Impl., pages 229–243, 1996.

[7] The Coq Development Team. The Coq proof assistant
reference manual. Coq release v8.0, 2004.

[8] D. Walker, K. Crary, and G. Morrisett. Typed
memory management via static capabilities. ACM
Trans. Prog. Lang. Syst., 22(4):701–771, 2000.

[9] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, 1994.

[10] D. Yu, N. A. Hamid, and Z. Shao. Building certified
libraries for PCC: Dynamic storage allocation. Science
of Computer Programming, 50(1-3):101–127, 2004.

1The Coq tool, for example, has not been developed at all
with the purpose of PCC in mind and thus is not best suited
for a realistic implementation.

